ANALYSIS OF DROUGHT
CHARACTERISTICS BY THE THEORY OF
RUNS

by

Pedro Guerrero-Salazar
and
Vujica Yevjevich

September 1975

HYDROLOGY PAPERS
COLORADO STATE UNIVERSITY

Fort Collins, Colorado




ANALYSIS OF DROUGHT
CHARACTERISTICS BY THE THEORY OF
RUNS

by

Pedro Guerrero-Salazar
and
Vujica Yevjevich

September 1975

HYDROLOGY PAPERS _
COLORADO STATE UNIVERSITY

Fort Collins, Colorado




ANALYSIS OF DROUGHT
CHARACTERISTICS BY THE THEORY OF RUNS
by
Pedro Guerrero-Salazar*
and
Vujica Yevjevich**

HYDROLOGY PAPERS
COLORADO STATE UNIVERSITY
FORT COLLINS, COLORADO

September 1975 No. 80

*Previously, Ph.D. graduate student at Colorado State University. Presently, associate professor of Civil
Engineering at COPPE (Coordinacao dos Programas de Pos-Graduacao em Engenharia), the Federal University
of Rio de Janeiro, Rio de Janeiro, Brazil.

**Professor of Civil Engineering and Professor-in-Charge of Hydrology and Water Resources Program, Civil
Engineering Department, Colorado State University, Fort Collins, Colorado, USA.



Chapter

IT

It

v

VI

TABLE OF CONTENTS

ACKNOWLEDGMENTS . . . . . . . . . . o7
KESTRACT i % o lo e v o e i sl e % vl 0 8 60 % 0 IR
;101 R T E E R R
INTRODUCTION . . . . & &+ & & & v o 4 IR Y
1-1 An Overall Review of Drought Definitions ., .
1-2 Objectives of Investigations . . . . . . ..
1-3 Organization of the Study . . . . . . . .

ANALYTICAL INVESTIGATION OF DROUGHTS OF STATIONARY TIME

SERIES USING NEGATIVE RUNS

2-1 Definitions of Runs . . . . . R A RN R T E R
2-2 Approaches to Analysis of Run Length % GG S SR ‘
2-3 Probabilities of Longest Run-Length in a Ssmple of Size n for Univariste
Independent Process . .o« v o« % 0o e v o w b
2-4 Probabilities of Longest Run-Length in a Sample of S1ze n for Univariate
Dependent Process . . v A . i . 3 e o o
2-5 Probabilities of Longest Run Length in a Sa.mple of Size n for Bnranate Cases
2-6 Integration of Quadrivariate Normal Distribution . . . . . . . . ¢ v ¢« ¢« «+ « «
2-7 Probabilities of Largest Run-Sums in a Sample of Size n . . . . . . .. . . ..
2-8 Run-Length Distributions for Infinite Populations of Univariate Cases . . . . .
2-9 Run-Length Distributions for Infinite Populations for the Bivariate Case . . . .
2-10 Probability Distributions of Run-Sums of Infinite Series . . . . . . . . ..

3=1 A Multivariate Generation Model . o « v o o o w o = w0 @ 8 0w o o . a wow ar c
3-2 Investigated Drought Characteristics . . . . . . « « « + « « & + & WEE R
3-3 Algorithms Used for Computing Relative Frequency Distributions of Rtms A
ANALYSIS OF RESULTS OBTAINED BY THE EXPERIMENTAL METHOD . . . . . & + & v o o o + = « = &

4-1 Fitting Discrete Probabi}.ity Distribution Functions to Frequency Distributions of

Run-Lengths . . . . .

s % 8 8 8 8 & s ® = & 8 »

iii

EXPERIMENTAL APPROACH FOR STUDYING DROUGHT CHARACTERISTICS OF STATIONARY STOCHASTIC PROCESSES

4-2 Distributions of Run Length ef Infinite Series . » w e o & e o e .
4-3 Distributions of Longest Run-Length in Samples of Given Sues i o % 5
4-4 Fitting Continuous Probability Distribution Functions to Frequency D:l.stribunons of
Run-Sums and Run-Intensities . . . LY R E N R
4-5 Distributions of Run-Sums and Rm-[ntensities of Infm1te Serles & . « g & &
4-6 Distributions of Largest Run-Sum in Samples of Given Sizes . . . . . . . . . . 2
DROUGHT ANALYSIS OF PERIODIC-STOCHASTIC PROCESSES . . . . .+ « « v v 4 v v o o v v o o v & .
5-1 Statement of the Problem . . RV T TR RN R T T s
5-2 A Review of Presently Ava;la‘ble Techmques o in TELY ’ T
5-3 Potential Techniques for Drought Analysis of Periodic Stochastic Processes
Bad ACase Study . o o i s % e w § e 8w e m w4 el e e 4 e el s A W d .
CONCIMBIONS ¢ & i & i w = %0 & & % % 5 @ 4 8 & % 6§ W @ 580 & @ e ¥ 50 @ e W e i
REEERENCES. . 5 woos v’ e 6 5 9 e e i 00 085 5 0 00 30 S00R0 B0 G0 0 T R R S0 i 6 ) e G

Page
iv
iv

iv

—

11
13
15
16
18

20
20
22
23
25
25
26
28
30
32
37
37
37
37
39
42

43



ACKNOWLEDGMENTS

This paper results from the research in the Hydrology and Water Resources Program, Department of Civil
Engineering, at Colorado State University, made possible by the financial support of the U.S. National Science
Foundation under the grant GK-11564 (Large Continental Droughts), and GK-31512X (Stochastic Processes in Water
Resources) with V. Yevjevich as the principal investigator. The financial support under this project that gave
the opportunity for advanced studies are gratefully acknowledged.

The doctoral dissertation by Pedro Guerrero, with V. Yevjevich the advisor, served as the basic material for
shaping this paper. Thanks are expressed to Dr, Duane C, Boes and Dr. Mohammed M, Siddiqqi, professors in the
Department of Statistics of Colorado State University, for their advice in statistical developments. Dr. Carl
C. Nordin of the U.S. Geological Survey and Dr. David Woolhiser of the U.S. Agricultural Research Service were
very helpful with their comments during different stages of the study. Dr. N.T. Kot egoda, from the University
of Birmingham, England, on sabbatical leave with Colorado State University, reviewec the material of this
paper in detail, giving useful suggestions, which is gratefully acknowledged.

ABSTRACT

Methodologies for analysis of droughts are presented on the basis of objective definitions of droughts for
stationary and periodic-stochastic processes, Droughts of.stationary series are studied by means of the theory
of runs. Distributions of the longest run-length and the largest run-sum in a series of a given length, and
distributions of the run-length and the run-sum of infinite series for various cases of univariate and bivariate
series are investigated. Exact, approximate or experimentally obtained expressions are presented for univariate
and bivariate independent and dependent series. For the bivariate series all combinations of serially indepen-
dent and dependent, and mutually independent and dependent series are studied. Where exact or approximate ana-
lytical solutions could not be obtained, the data generation method is used, with results checked by using par-
ticular cases for which the exact solutions are available. Frequency distributions of various drought
characteristics associated with the runs, obtained by the generation method for the bivariate case, are fitted
by discrete or continuous probability distribution functions, respectively for the run-length and the run-sum.

Multiple regression analysis is used to obtain useful relationships between the parameters of fitted
distribution functions and the parameters of time series dependence, cross dependence and the truncation levels
of the basic series.

Periodic-stochastic series are studied by defining drought and its parameters for this particular type of
hydrologic processes. New approaches and techniques are presented with a case study illustrating the power of
these new approaches.

PREFACE

Pressure for a higher standard of living and the shortages, deficits and droughts. Difficulties often
increase of world population continuously require more arise with the meaning of the terms such as water de-
food, energy, raw materials, industrial production and mand, requirement, use, consumption, deliveries,
various services. The inevitable result is the in- rights, and accompanying factors. It is rare to meet
crease in pressure with time on all types of world- two individuals of different professional backgrounds
wide available water resources. Because these renew- who have the same connotation of the term "drought."
able natural resources on continental areas are con-
stant, in their averages, regardless of their space International organizations (such as UNO, UNDP,
and time variations, sooner or later the increase in FAO, UNESCO, WMO, regional UN commissions, scientific
water demand faces space and time shortages because of and professional associations) and national and re-
stochastic variations in water supply and demand. The gional organizations are concerned with both the broad
experiences and investigations show that the risks of and the specific problems related to drought phenom-
water shortage increases rapidly with an increase of enon and its consequences. International conferences
utilization of the total available water resources in are held on population, environmental control, food
an area. Particularly sensitive in this regard is the production, food distribution, eventual international
food production as the most important commodity of a food storage, and on similar subjects which are
world living on the margins of balance between food strongly related to droughts. Characteristics of
supply and food demand. Usually water shortages of these meetings are discussions in generalities, often
drought proportions have the largest impact on the without sufficient scientific information for claims,
agricultural production. positions and proposals. Feeding the world population

and the establishment of world-wide food storage cen-

Confusion governs the selection of random ters are ever-increasingly important issues of a very
variables which are used to define the concepts of sensitive character. Only the most correct informa-
water shortages, deficits and droughts. Differences tion, on an advanced scientific level, can replace the
between water demands and water supplies, as periodic- subjective approaches by a more objective analysis and
stochastic processes, are crucial in defining the decision making process.
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Three characteristics related to drought
consequences and drought control technology can be
distinguished at present:

(1) An unusually high emphasis is given to
atmospheric circulation in Search for explanations and
predictions of droughts and related agricultural food
production. This emphasis may enhance the under-
standing of atmospheric processes but definitely lacks
predictability of droughts of long duration, large
water deficits and extensive areal coverages.

(2) Great attention is paid to droughts of
semi-arid and arid regions of presently marginal agri-
cultural production, while a surprisingly small atten-
tion is given to drought risks and necessary drought
control technology to mitigate its consequences in the
semi-arid regions of presently substantial world food
production (US Midwest, USSR steppe, Canadian prairies,
Argentinian pampas, Australian wheat regions, and
similar areas). Droughts in the marginal regions
cause stress on several millions of people, while
droughts in the large food-producing regions do not only
disrupt the world food prices but also involve the fate
of hundreds of millions of people.

(3) It is a common and necessary expectation to'
search for new agricultural technologies and new
arable lands in order to increase the food production.
This line of activity is and should be the principal
thrust for an increase in food supply. However, sta-
bilization of food production by using the presently
available technologies and lands already under culti-
vation, and finding solutions for random fluctuations
in food supply, represent a task as important as the
search for new technology and new lands. In several
aspects, this stabilization and solutions for fluc-
tuations in food production may be as important and
productive as the search for new technology and new
lands. Understanding the drought phenomenon, and
particularly finding the best mix of drought control
measures specific to each region, for solving the
problems of stabilization in food supply, including
the establishment of food storage centers, are the
challenging tasks fo a multidisciplinary scientific
approach.

Random variables must be well selected if they
are to be meaningfully used for definitions of water
shortages, deficits and droughts. Soil moisture, pre-
cipitation, evaporation, groundwater levels, river run-
off, state of water storage in reservoirs and lakes,
snow and ice accumulation and melting, and similar
variables are periodic-stochastic space-time processes,
which must be used either individually or in combina-
tions, and according to the problem at hand, for the
definition of the three concepts of shortages, defi-
cits and droughts. It seems that as many definitions
of these three concepts are available as there are in-
vestigators. This creates confusion among the users
of information on droughts. In general, droughts are
associated with water deficits of long duration, high
intensity of deficits, and large areal coverage, usu-
ally involving all water resources variables and users,
having significant economic and social consequences.
Deficits can be related to the lack of water at a
given place for a given time interval, with the rela-
tively moderate consequences. Shortages are a small
negative difference between water demand and water
supply, with readily acceptable consequences. Defini-
tions of the three concepts of droughts, deficits and
shortages, acceptable to a majority of professionals
in the world, need a universal acceptance.

Droughts are a creeping-type disaster phenomenon.
In studying physical aspects of droughts, the fol-
lowing properties of drought-defining wariables are of

]

practical significance: duration of shoriages, total
water deficits over this duration, areal coverage by
this total deficits, intensity of largest shortages,
and similar random variables. These variables are
best described by joint or marginal probability dis-
tributions of individual variables. The properties

of these random variables are related either to popu-
lation or to samples of various sizes. Assuming a
multivariate or a univariate of water supply vari-
able(s) as the input process, and a multivariate or a
univariate of water demand variable(s) as the output
process of agricultural and water resources systems,
the crossing of these two time processes provides the
necessary information for computing or estimating the
probabilities of drought properties. Furthermore, the
economic drought properties, as functions of amutually
dependent set of random variables, therefore also as
random variables, are necessary for solutions of
drought problems.

In contrast to atmospheric circulation approach
to drought investigations, investigations of probabil-
ity distributions of drought properties should be
realistically based on past records of selected cli-

ematic and hydrologic random variables, under the fol-
lowing two basic hypotheses:

(1) Inferences on population characteristics of
drought properties, based on drought-defining periodic-
stochastic variables, are subject to sampling errors
(often with historic non-homogeneity and systematic
errors in samples, which must be first identified and
removed), requiring the unbiased and most efficient
estimation techniques; and

(2) General climate and resulting hydrologic
periodic-stochastic processes over the next 150-200
years will have essentially the same population char-
acteristics (structures and parameters) as the records
of the past 150-200 years demonstrate; this assumption
has a strong support, namely that of a temporary sta-
tionarity of annual values of these periodic-stochas-
tic processes, regardless of a continuous production
of papers with the claims of expected sudden changes
in the climate.

Reliable probabilistic characteristics of drought
properties are fundamental as the information for any
advanced approach to technologic, economic and social
aspects in drought investigations and related decision
making. Economic aspects are basically of two types:
(a) measurement of and modeling the economic damages
and regional consequences due to droughts; and
(b) economic benefit-to-cost analysis for optimiza-
tion in selecting a mix of drought control measures.

In connecting probabilities of physical drought
properties to economic drought impacts, especially in
the agricultural production, new indices are needed on
droughts if information produced should seriously af-
fect the decision making process. Furthermore, a re-
lationship exists between physical drought properties,
loss of agricultural production and the population
involved. This then requires additional indices and
mathematical modeling in order to take into account
all factors. Social consequences of droughts, with
all the political implications, represent a synthesis
of drought analysis and drought control. They are
less prone to be measured by indices or by mathemat-
ical modeling, usually being analyzed by descriptive.
methods.

Drought investigations cannot be productive
without using advanced methodologies in selecting
drought control measures, as the drought control tech-
nology, by optimizations and particularly well



designed decision making process. For a future
development of such methodologies, the following as-
sumptions are necessary:

(1) Drought control measures may be divided
into internal measures to a water user and to external
measures to all or most of water users. Internal mea-
sures are such as moisture or water comservation in-
side a production unit, various types of adjustments
to water shortages, replacements, changes in the pro-
duction mix and technology, and similar measures.
External measures are basically water storage and
regulation outside the production units, uni-direc-
tional water transfer, water interchange between adja-
cent regions, and weather modification. Furthermore,
insurance against drought losses and storage of vari-
ous products in water surplus times for water deficit
times complement the classification of drought control
measures in their most general treatment.

(2) Because of large varieties and a range of
levels of drought control measures, it should be
rarely expected that only a single measure would re-
sult as an economic and social optimum. More often
than not, a mix of most of relevant drought control
measures would come out to be a global optimum for a
given region.

(3) Treatment of drought control measures is
an interdisciplinary and multidisciplinary problem,
subject to a most effective treatment only by a team
of specialists and generalists.

(4) The systems analysis is a good approach te
major drought problems, not only for drought descrip-
tion, responses to it, determination of its loss func-
tion and the selection of an optimal mix of drought
control measures, but also for incorporating inputs
from various disciplines for both a large-scale and a

small-scale approach to drought investigation problems.

The contributions to drought investigations
until 1968 have been presented in the form of anno-
tated references in the publication '"Drought Bibliog-
raphy," prepared by Wayne C. Palmer and Lyle M. Denny,
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‘processes.

U.S. Department of Commerce, Natiecnal Oceanic and
Atmospheric Administration, Environmental Data Ser-
vice, NOAA Technical Memorandum EDS 20, Silver Spring,
Maryland, June 1971. Though it does not contain all
the literature on a world-wide basis, this bibliog-
raphy gives a good insight to problems treated,
approaches used, and indirectly to the state-of-the-
art of various aspects of droughts.

Research on continental droughts has been going
on for more than a decade at Colorado State University
in the Hydrology and Water Resources Program of its
Civil Engineering Department. Different aspects of
large droughts, involving long duration, significant
water deficits, large areal coverage, and economic
impacts on a region have been investigated. The pres-
ent paper "Analysis of Drought Characteristics by the
Theory of Runs' is a continuation of research carried
out previously by using the probability theory, math-
ematical statistics, and stochastic processes under a
strict objective definition of drought characteristics.

The paper first reviews the state-of-present-
knowledge of droughts of both univariate and bivariate
However, the main emphasis and contribu-
tion are on drought characteristics for bivariate
processes, mainly concerned with droughts of two rep-
resentative variables. These two variables may be
the time series at two selected points, average char-
acteristics of time processes of drought defining
variables of two areas or regions, water yields of two
river basins, two reservoirs, two aquifers, or their
combinations. The major thrust of the paper is
intended to contribute to a future methodology of
studying large continental droughts using the water
supply and demand variables which best define a given
drought problem.

Vujica Yevjevich

September 1975
Fort Collins, Colorado



Chapter |
INTRODUCTION

1-1 An Overall Review of Drought Definitions

It is difficult to come out with a universal and
commonly accepted definition of a drought. Several
authors have tried to define a drought under different
conditions, such as the agricultural drought, climato-
logical drought, hydrological drought, etc.
(Subrahmanyam, 1967).

A drought is defined in this study on the basis
of differences between the processes of water supply
and water demand. The supply processes or supply time
series may be the precipitation over an area, the
streamflow at a given point of a river, moisture in
the soil, storage of water in an aquifer or reservoir,
and similar hydrologic variables. The demand process
or demand time series may be a single-purpose water
use, such as water used for agriculture, for contin-
uous or supplemental irrigation, hydropower, water
supply, low flow augmentation for quality control, or
the demand process may result from a combination of
various water uses, When the demand exceeds the
supply, the water shortage occurs, and this is the
general condition for drought initiation.

Natural and artificial water retentions affect
highly the initiation and duration of a drought. The
retention occurs naturally in the soil in case of dry
farming, or it can be artificial as in case of reser-
voirs for runoff regulation. Natural storage is con-
sidered in this study as a part of water supply.
Artificial storage is considered both as a part of
water supply when it already exists and as a drought
alleviation measure when it is only planned.

The drought analysis is based on time series of
water supply and water demand. It is sometimes
claimed that reliable data both on water supply and
water demand are difficult to obtain even in developed
countries. With sufficient efforts, regardless of
the relatively scarce data, it is feasible in most
cases to gather sufficient information on water supply
and water demand for investigation of drought related
problems. The periodicity of the year in various
parameters of water supply and water demand makes the
analysis of droughts somewhat difficult, so that the
study of droughts with time intervals of less than a
year warrants a special attention.

A drought is defined here as the deficiency in
water supply over significant time to meet the water
demand for various human activities. This deficiency
is mainly produced both by the random character of
natural processes that control the distribution of
water in space and time on the earth's surface, and
by randomness in water demand.

The existence of variety of climates over the
earth surface implies that droughts should vary ac-
cording to climatic characteristics. The climates as
classified by Thornthwaite (1948) are arid, semiarid,
semihumid and humid. The climate determines the nat-
ural biological cover. Combined with human activities
it produces the water demand, which differs from re-
gion to region and from one time interval to another.
The long-term stochastic fluctuations with large vari-
ations around the mean of available water makes the
problem of long and large droughts much more important
in arid and semiarid regions than in semihumid or
humid regions.

An objective definition of droughts, based on the
theory of runs, may be used for stationary time series
(Yevjevich, 1967, 1972b). For the univariate case and
discrete time series of water supply, a selected arbi-
trary variable value or truncation level Xo may rep-

resent the water demand, as shown in Fig. 1-1. .The

X; s
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Definitions of Positive Run-Length, m,
Positive Run-Sum, 5, Negative Run-Length, n,
and Negative Run-Sum, D, for a Discrete
Series, xi.

X
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Fig. 1-1
-

discrete series truncated by this constant X, gives

two new truncated series of positive and negative dif-
ferences. A sequence of consecutive negative devia-
tions preceded and followed by positive deviations is
called a negative run-length (n in Fig. 1-1); it may
be associated with the duration of a drought. In this
context, the definition was used by Llamas and
Siddiqui, 1969; Saldarriaga and Yevjevich, 1970;
Millan and Yevjevich, 1971; and Millan, 1972. The sum
of all negative deviations over such a run-length is
called the negative run-sum (D in Fig. 1-1), and the
ratio of the negative run-sum and the negative run-
length is called the negative run-intensity (D/n,

Fig. 1-1).

For a two-dimensional process {Xi’ Yi}, with

distribution F(x,y), the following concepts can be
used (Yevjevich, 1972b). Two crossing or truncation
levels are now used, denoted by Xy and ¥ (Fig.

1-2), which are not necessarily of the same

xii
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Fig. 1-2 Definitions of Joint Run-Lengths of a Two-
Dimensional Process, with Two Constant

Crossing Levels, X, and Yo



probability for each marginal distribution. Four
events are obtained as shown in Fig. 1-2: both devia-
tions are positive which define the joint positive
run-length (mxy}; both deviations are negative which
define the joint negative run-length nxy; X, are
positive and Y negative deviations which define the

joint positive-negative run-length {ny); and X, are
negative and Ys positive deviations which define the
joint negative-positive run-length {ny). The joint

run-sum is defined as the sum of deviations of both
the run-sum in Xg and the corresponding run-sum in

yi"over the corresponding joint run-length. Conse-

quently, there are four different types of run-sums,
one for each of the four types of joint run-lengths.
The joint run-intensities are defined as the joint
distribution of the intensity in x and the intensity
in y over the joint run-length.

For the case of hydrologic periodic-stochastic
series, the theory of runs cannot be used directly
and simply as in the case of stationary stochastic
processes, because of the periodicity involved. In
this case criteria must be developed concerning the
parameters of drought magnitude, duration and volume,
For the unidimensional case, the drought magnitude
criteria can be defined as the minimum of the mean
monthly difference between supply and demand over the
duration of a drought.

1-2 Objectives of Investigations

The first objective of this study is to determine
the joint probability distribution of hydrologic

droughts for two hydrologic time series, concurrently
observed at two locations. The second objective is to
find the relations of characteristics of probability
distributions of joint drought occurrence at two loca-
tions and the statistical parameters of the corre-
sponding two hydrologic time series. Since the theory
of bivariate runs has not been developed yet
(Yevjevich, 1972b), this study is a contribution to-
wards this goal. The third objective is initiate a
development of a methodology of studying droughts of
hydrologic periodic-stochastic processes, exemplified
here by monthly time series.

1-3 Organization of the Study

The study of droughts of the bivariate stationary
case is presented in Chapter II by giving the exact
analytical expressions for the simple cases and by
analytical approximations for the more complex cases.
The experimental (Monte Carlo) approach, which was
used for cases for which even the approximate expres-
sions are not available, is presented in Chapter III.
Results of the experimental approach are given in
Chapter IV. Discrete density functions are fitted to
frequency distributions of run-lengths, while contin-
uous density functions of the Pearson family of func-
tions, and series expansion approach, are used to fit
the frequency distributions of run-sums. This approach
allows the parameters of distributions to be expressed
in terms of basic statistics of the two underlying
hydrologic time series by using the multiple regres-
sion equations. Since the theory of runs of station-
ary series is not adequate for the analysis of
droughts of periodic-stochastic processes, the runs
of these processes are discussed in Chapter V, with
an example.



Chapter Il

ANALYTICAL INVESTIGATION OF DROUGHTS OF

The theory of runs as used here to investigate
the droughts of stationary stochastic processes has
been a topic of inquiry for a long time. Reviewing
the statistical literature one observes that several
definitions of runs are used.

2-1 Definitions of Runs

Three definitions have been proposed in literature
for runs called here: classical, recurrence and
Mood's definitions.

Classical definition of runs. This definition is
probably given first by De Moivre, Uspensky (1937),
among others. It is defined as a success-run of
length r in a series of.independent trials when a
success occurs at least r times in succession. In
Feller's words (1957), it is an uninterrupted sequence
of either exactly r or of at least T successes,

According to Feller, this definition has the follouing;

drawback. If exactly r successes are required, a
success at the (n+l)-th trial may make null the run
completed at the n-th trial. On the other hand, if at
least r successes are required, every run may be
prolonged indefinitely, and the occurrence of a run
does not reestablish the initial situation.

Recurrence or Feller's definition of runs. A run
of length r (Feller, 1957) to be used in recurrence
theory is uniquely defined with the counting starting
every time a run occurs. Namely, a sequence of n
events of 0 and 1 contains as many runs of 0 of the
length r as there are non-overlapping and uninter-
rupted blocks containing exactly r events of 0.

This definition is not well suited for the analysis of
droughts, since it does not say when a run starts or
when it finishes, because a run-length of three zeros,
for example, may be preceded or succeeded by zeros.

Mood's definitién of runs. Mood's (1940)
definition seems the most suited for the analysis of
droughts because a run is defined as a succession of
similar events preceded and succeeded by different
events, with the number of elements in a run referred
to as its length, as shown in Fig. 1-1.

The above distinction of various definitions of
runs is needed because the articles in the statistical
literature sometimes treat runs without clarifying in
which sense the term "run" is used. A reader may be
often misled. Mood's definition of runs is the defi-
nition used throughout this study only.

Runs as they are used in statistics are
characterized as a philosophy and a technique
(Wolfowitz, 1943). The ordering of observations ac-
cording to some characteristic is always involved, and
the results of this ordering is again ordered ac-
cording to some other characteristic. In the case of
hydrologic applications, the characteristic which de-
fines runs is the occurrence of series values above or
below a certain level. This level does not need to be
the same for all time positions.

2-2 Approaches to Analysis of Run-Length

In the application of the theory of runs to
hydrologic problems two approaches have been followed
in various studies of run lengths: the integration
approach and the combinatorial approach.

STATIONARY TIME SERIES USING NEGATIVE RUNS

The integration approach refers to runs of an
infinite population, which in the case of stationary
and ergodic series is synonymous with the first run.
In this context the term infinite population will be
used. The combinatorial approach treats the runs in
a sample of given size.

For the case of run-length, the integration
approach is based on finding the probability

P (run-length = k) = P (xi » C: X0 2 C5.0-3

% > C).

ek = ©5 Xiopel

If the joint distribution of the xi's is known, the

integration approach gives the required probability.
If the time process is independent, the computation is
simple because the product of the marginal probabili-
ties give the probability of the run-length. A draw-
dack in the integration approach is that it does not
permit the computation of the probability of a run-
length equal to k in n trials, which the combina-
torial approach does. Furthermore, the analytical
expressions for the other types such as the run-sum,
and the run-intensities are very complex to integrate
for the dependent bivariate cases.

Probabilities of various runs are studied in this
chapter by using the theory of runs for the case of
infinite population and for both the univariate and
the bivariate cases. The exact analytical solutions
are obtained only for simple basic processes, while
approximations are obtained for more complex cases.
The data generation or Monte Carlo approach is used
for those cases for which neither the exact analytical
nor approximate analytical solutions are feasible.

For the combinatorial approach the run sample
statistics studied differ according to the objective
for which the run theory is used. Such statistics are
the total number of positive and negative runs regard-
less of their length, the total number of runs of a
given kind, the longest run-length of either kind, the
longest run-length of a given kind, the largest run-
sum, the other run-sums, the run-intensities, and any
other statistic of interest. For drought purposes,
types of common interest such as the longest and the
second longest negative run-length, and the largest
and the second largest run-sum, are investigated in
this paper.

The combinatorial approach in the case of
run-lengths makes use of a transformation to a zero-
one process. Whenever a value is below the trunca-
tion level the new random variable is one and whenever
a value is greater than the level the new variable is
zero. Taking advantage for the independent case of
the fact that the new variable has a Bernoulli distri-
bution of events 0 and 1, the combinatorial approach
may be used. For the independent case, as shown
later, it is simple to obtain the probability:

P (run-length = k in n trials).

The combinatorial approach is adequate for those-
hydrologic problems which relate to the probability of
extreme events in a sample, for example a drought
duration of a given probability to occur in the life
of a project of n years. This approach is used in
this paper to obtain the analytical approximations or
exact expressions for the most simple cases of



underlying stochastic processes, The results are also
used to check the experimental or Monte Carlo method
of deriving the properties of runs in the sample of a
given size for more complex cases,

The empirical method of studying droughts for
stationary time series is discussed by Saldarriaga and
Yevjevich (1970) for runs of infinite series. The
sample data obtained by the empirical techniques are
used to determine the probabilities of durations of
droughts. The empirical procedure is as follows.
Run-lengths are measured with respect to a given trun-
cation level and the relative frequencies of run-
lengths that are greater than a given duration are
computed. These frequencies provide the estimates of
probabilities. This enables the study of drought
measures with droughts not to be exceeded, on the
average, in a given number of years. These frequen-
cies are used as probabilities of droughts of a given
duration, and as probabilities of all events equal to
or greater than a given duration. Because sample
sizes of hydrologic data are small, large sampling
errors are common in the estimates of these probabili-
ties. Drought probabilities are studied analytically
making use of statistics of the basic processes.

These have smaller sampling variations than the above
computed frequencies. A convenient analytical method
is the theory of runs. Run-length properties are
distribution free in comparison to run-sum and run-
intensity properties which are dependent on the type
of the underlying distribution.

2-3 Probabilities of Longest Run-Length in a Sample
of Size n for Univariate Independent Process

The study of the longest run-lemgth in a sample
of size n for independent series was initiated by
De Moivre (1738) when finding the probability of a
sequence of r successes in n trials. Following
Whitworth (1896, Propositions XXVIII and LII) an
experiment succeeds m times and fails n times, the
probability that the longest run-length of successes
is less or equal to k in m + n trials is the coef-

ficient of X"

1 l_xk-'-l n+l
m+n 1-x
n

This expression resulted from the number of ways in
which m items can be distributed into n+l1 differ-
ent compartments with no compartment to be either
empty or to have more than k+1 items, which is the

in the expansion of the expression

(2-1)

coefficient of x" in the expansion of the expression
k+1 | n+l

1-x )
1-x (=3

Similarly, Bateman (1948) presents the number of
ways of arranging T elements (i=1,2) into t parts

none of which exceeds k in magnitude. In the same
way, Mosteller (1941) presents the special case of the
probability of one or more runs not less than k in
length amongst all runs of values below the

median. For Mosteller, the coefficient of x™ in

(2-3)

gives the number of ways of partitioning n elements
into Ty partitions in such a way that no partition

contains k or more elements and none is void.
Rewriting the above expression as

o r, o r, - l+t
R [“_xk-l)] 1 ) 1 2 2-4)
t=0\ r, -1
1
the coefficient of x" becomes
¥ AV ICB
L -1 . (2-5)
j=0 j T - 1
or as Bateman presented it
L j [\ [n-jk-1
1 (1) ; (2-6)
j=0 j t-1
;8
which is identical to the coefficient of x * in the
expansion of the equation
xt l-xk %
1-x .
Furthermore, the number of ways of arranging ri
elements into t parts of magnitude k is
t j*lft\|/r. -7 (k-1)-1
£06,0 = ] (-1) ( .
j=1 j .
T, -jk-1
o (2-7)
t -1

An explicit expression for the probability
distribution of the longest run-length of a given kind
in a series of n independent trials was given by
Bateman (1948). A sequence of T elements isstudied,

of which r, are of one type and r, of another

type, with T 4T, = T.

years of annual precipitation is studied of which T,

For example, a sequence of T

years are deficit years and r, are surplus years,

with r +r, = r. The total number of possible combi-

f Al

nations rcr which can be formed from the r ele-

1

ments constitutes the fundamental probability set.
The subset of all combinations each containing at
least one run-length of a given kind and of a given
length g, can be determined by considering the par-
titions of Ty
part, where k = 1,2,...,3d and finding the number of

elements having k as the greatest

ways in which they can be combined to form a combina-
tion with at least one part equal to g4 and no part

greater than 8yq- This may be achieved simply by con-
sidering the different ways in which such partitions

of T form groups of length 2t or 2t+l, where
tnl,2,...,r1-3d+1 for 2T, There will be no loss
of generality in assuming T >r,.

The number of sequences of 2t groups with at
least one group containing gy elements and no group

containing more than 84 elements, designated by

N(2t, gd|r1,r23 is



r,~1 Equation 2-13 for these conditions becomes the

2
% : B
N(Zt.gdlrt,rz) =y Zfl(t’ng . (2-8) Mosteller's equation. Replacing
erd +1 r +1\ /T -j*1
h il 2 b 2 2
The factor 2 is introduced to allow for the sequence (j} ¢ Y t-j g
to begin with either a deficit or a surplus. In the j .
same way, the number of -sequences of 2t+l1 groups of : : ; i
which the largest has g, elements is in Eq. 2-13, 1n§erchanglng the order of summation, and
d using the relation
E ; rz_l m
N(2t+l,g,|r,,r,) = £ (t+l,g.) m ., n, _ m+n
cod Co 4 Y igg(k"i}(i) Rl
(rz-l) then
+f (t,g.) ’ (2-9)
157
¢ P[Gdagdlrl,rz]
The enumeration of the required subset is completed r /g
by summing N[Zt,gd!rl,rzj and N{2t+1,gd|r1,r2) over 12 d ( 1)j+1 T, (r1+r2-jgd)
all groups, i.e., from t=1 to t = rl-gd+1. Denoting j=1 j T, 2 (=343
this subset by N(g,|r,,r,) then % :
d'"1*"2 T
1
r -g, +l W = - JilgueE) - == - s 13
1 Ed r2'1 " « because m T J(gd 1) 1, k ='j-1, n T, j+1,
Nfgd|r1,r2) = Z 2f1[t,gd) and i = t-j. If only r is given and the probability
t=1 t-1 of a deficit to occur is constant and equal to p,
with
r2-1
+ £ (t+l,g.) ( + T
1 d T 1 T-
t-1 Plr,l = )P~ (-p7 1
1 1‘1_, ]
rz'l then
+ £ (t,g,) (2-10)
1 d k
t r
Factorizing and simplifying terms, Eq. 2-10 becomes pIGdzgd] " i EgP[Gdggd]rl,r] P[rL]' (215
1:=d
R zptd Th bability that a deficit t least
= £, (t ) . e probability that a deficit occurs at leas
N[gd|r1,r2} I 1(t:89) (2-11) g times in succession in a series of n independent
. t=1 trials with the probability p of the deficit at any
% . s trials is the well known problem of the '"runs of luck"
Hence in a sequence of r elements, T P RS solved by De Moivre (1738). The same problem has been
deficit and r, are surplus, with Tr, =T and solved using difference equations by Uspensky (1937),

r, > T,, the probability that the longest deficit run and is also given by Whitworth (1896), Cramer (1946)

1 and others. This can also be obtained using Eq. 2-12
consists of 84 elements is and summing up accordingly.
N(gd|r1,r2] Making use of generating functions, denoting
PIGy = gdlrl"":'2] = _r)_ . (2-12) Pn,g = P, the longest run < (g-1) in n trials, and
(rl P(Gdzgd) =1 - Pn,g’ their generating function is
The probability of the longest negative run-length © 1
being equal to or longer than a given value, say gd, P(x) = E P L 1-9(x)
is n=y ME 1-x
P[Gy2gylr,,T,] ) £ il o8
= T (2-16)
el L y 1 -x+p°qx
184 t ;i~~1(t T -8y~ 1)1\ 513 1
= z (r2+1) Z (-1) j so that the coefficient of the x term is the
t=1 t/ j=1 t-1 probability that the longest run is less than or equal
(r ) to (g-1) in n trials. The proof is given by
T, Uspensky (1937, pages 78-79) and also through combina-

torial theory by Whitworth (1896, Proposition LIII).

Equation 2-13 presented by Bateman (1948) is a more
general equation than that given by Mosteller (1941).

Mosteller considered the case of runs above and below The generating function 4v(x) is a ratiomal

the median, where r, =T, = r/2 n, for a sample of function and can be developed into a power series of
even size, and derived the probability of obtaining at % according to kgown rules. Uspensky shows that the
least one run equal to or longer than a given length. coefficient of x  is



Png ~ Png TP Pnogg, (2-17)
with
n/g+l * n-pg
L L
By o= f c-n( )c o
N o 8 w (2-18)
and B is obtained by substituting n-g for n.

n-g,8
David and Barton (1962) give a solution for Pn g’

based also on the combinatorial analysis, as

B4

Pﬂsl = . 20 P[Gdsgd|rl,r] P[r1] . (2-19)
1

and

a i r2+1 n-i(m+1)
Lot ("N

i 2
P[Gdsgdlrl,r] = 2

T
(rl)
n-t,
with a = mln{rzvl, (mtl}} 4
n+r2+l
and n+ 1 - T,2m+ 1:# [ = ]

The parameters of the above sampling distributions of
the longest run-length are not available except for
special cases but only as approximations. Cramer
(1946) gives the asymptotic mean (valid for large
sample sizes) of the distribution of the longest run-
length, gd, for the sample of size n as

= - o B 0(1),

Tog(1-q) (2=

E[g,] =
with q = P(x<C), C the truncation level, and 0(1)
an error term of the order of one.

Baticle (1946) studying the problem of
repartitions gives asymptetic equations for parameters
of the sampling distribution of the longest run of
consecutive successes in n trials, valid for
(g/s)~+0, with g the length of the longest run, and
s the total number of successes, as

1 11 1
E[%]=-ﬁ-[l+§ 3*.....4-;], (2-21)
and
BB « oy [+ £ + 3 (Fa)7], (2-22)
with
£(n) = %+ %+ . . % (2-23)

Burr and Cane (1961) present approximations to
the exact expression presented previously by Whitworth
and Mosteller. Another approximation presented by
David and Barton (1962) is

m+1
1
-[(r +1) - Sy |
2 nﬂ*l p

P[Gycgylr,.T] = e (2-24)

which is valid for large g4 and T » 20.

2-4 Probabilities of Longest Run-Length in a Sample
of Size n for Univariate Dependent Process

Approximation of the first-order linear
autoregressive model by Markov chains. The case of
the uni-dimensional dependent time series can be
solved for the first-order linear autoregressive

model,
4 2
U M T T
where p 1is the first s:rial correlation coefficient

of the standardized ser-es x; and € is a sequence

of independent identically distributed variables.
This model is approximated either by a first-order
Markov chain or better by a second-order Markov chain.
The approximation for the first-order Markov model is
then

Plx,,, S ClxisC.--- < C]

Xion

= P[x;,,<C|x,5C] (144 )], (2-25)
with ¢[02} an error term. Millan (1972) found that
for p < 0.4 the approximation is good. In the case
of a first-order Markov chain used to approximate the
first-order autoregressive model, the transition prob-
abilities may be obtained by using the autoregressive
model, namely

P, = P[xiﬂsc]xi;c] 2

P[x, ,>C,x.sC]

o T i, ¢
1-P » P[xi+1>c|xiscl = __"T_P[xisc ’
with the joint probabilities obtained from tables for

the case of a normal distribution. The transition
probability values are

(2-26)

b, = P[xiscixi-lsc] » @ =1-P,

P, = Plx;sClx; >C] , Q=1-P (2-27)

2 r
Development of probability distribution of the
longest run-length for simple Markov chains. Bateman
(1948) obtained the distribution of the longest run
in n trials regardless of its kind. The probabil-
ity distribution of the longest run of a given kind,
say the negative run, in a sample of size n, as
developed in this paper, is outlined below. Con-
sidering the partitions of T and Ty for each

partition within a given number of 2t or 2t+l
groups, the multiplying probabilities are the same
as the number of transitions from (x,>C) to (".15C)’
and the opposite. * %

Thus for a given sequence of 2t groups
beginning with {xisc3 there are 2t-1 transitions, t
from (xisCJ to (xi_1>C} and t-1 from (xi_l>C) to

r2~t cases

are continuations of (xisC) and (xi>C), respectively.

(x;5C), while the remaining r,-t and

The probability of obtaining a given sequence of 2t
groups is

rl-t t r2-t

¥l t  (2-28)
PPy PTG



which may be written as

(& +-%)(%)j Pl Q2 .

In the same way, the probability of obtaining a
sequence of t+l groups of {xisc} and t of {xi>C} is

(2-29)

2. N T T
P 271 1 2
'p-l(—a—qz x) P (2-30)
and t groups of (xisc] and t+l of (xi>CJ is
Q 2°1] 1 o0 @-30)
% 1P 1 72

The joint probability distribution of 2t and g is

P(2t,glr,.r,)

P PZQI): 5
(t,t.) (5 3
. g (P )(E?T (2-32)
5 !(qu;) #(t, t,;)( Qi (t+1,t z},,i ﬂt,’—*l,s]g }
t QP } :
Similarly for 2t + 1
Pl2e+lggle,.r,)
P PO\ *
PO\t i 20090 + @lte P . d
EE(F:%) {o(r,t,5) (,.2 691-) LTSS o) Ly L 1.3}592-}
(2-33)
in which
) r2—1
¢(t,r.g) = £,(t,0)\ o,/
T, -1
$(t+l,t,g) = f (t+1,g) -1 i and (2-34)
r,-1
¢(t,t+l,g) = fl(t.s) t )
1)-1 r.-js-1
; i P i
£ (t,9) Z oM T

i=1

The probability distribution of g
summing over all t from t =1

is obtained by
to T g+l, or

Plelry.r,]

rl-g-l

P.Q.\t
BN gres A o1, L 21
Il {e(r,t,p) (r, ql) #(r 1.:.:)lll #(t,t l.g]qel (Q;FI)

51 \ (oe.t c)( - i)* o(tel,tug) - o ¢(:.:+1.nq-°~l
te q2 . P2 & 1 2

(2-35)

Since
T
PRy = 7] = G )

then

P[G=g] = ?[G=g|rl,1’2] P[RI=1‘1}- (2-36)

To obtain the cumulative distribution function of the
longest run of one kind in a series of Markov chain
trials, a summation is made from g =1to g = 84> SO

that
&4
P[ngdlrlnrzl - E P[G = Eirllrzl ’
g=1
and
84 &y
P[s‘fgd] - 2 I P[G = gIrIIrzl P[R ] » (2-37)
0 g=1
with
PZ
B e 4 (2-38)
1 P1+P2

used throughout this development. This condition is

sarrived at by using the relation

P[E;] = P[Ei_lEi] + P[Ei“lﬁi] y

on the assumption that P(E;) = P and P[E&) = Q for

all i, It is assumed here that the probability of
the event E occurring at the i-th trial, when noth-
ing is known about the results of the preceding
trials, is independent of i. This in effect implies
that the start of the sequence of observations is a
randomly selected point in a longer sequence following
the same probability laws.

Millan (1972), working independently, obtained
the conditioned distribution of the longest run-length
in a series of dependent trials (Markov chain type) of
size n, making use of the developments of Gabriel
(1959) and Whitworth (1896), which are a different
approach than the one used in this study, as

0

c
1 + + -1
Ple < 8] =| | ] L(S’ﬁ T; *(L{s;g'a D & "5
a-1

1;fi-b “2] 55 1pymes P[R, =T, ]
7] 7] "1 (1-Py 1”1

n ©1 1-p. 12
2 E L(s,g,a) (s-l n-s 11.
! (51 -1 ) TP,

s=1 c=1

s=0 e=l .

B b
2 s n-s
[ﬁ;] Pl (l-Pz) ’ . P[strz] 5

(2-39)
in which
a
Lisme) = § -0iHER Y, (2-40)
i=0 .
with
. 5-€
a = min{e, (—E—J} ;
and



s-e+l>m: [E:EQL]

L(s,m,e) represent the number of ways in which s
elements can be arranged into- e intervals, each of
which contains at least one element and the largest of
which contains m or less elements. Equation 2-37
becomes, then, the expression for the probability dis-
tribution of the longest run of a given kind, say the
negative run, in a sample of size n for a simple
Markov chain, which also can be used as an approxima-
tion for the first-order linear autoregressive models.

2-5 Probabilities of Longest Run-Length in a Sample
of Size n for Bivariate Cases

For the two-dimensional or bivariate cases, a
similar approach to the one used for univariate series
is followed for two series in four alternatives:

(1) serially and mutually independent; (2) serially
independent but mutually dependent; (3) serially de-
pendent but mutually independent; and (4) both seri-
ally and mutually dependent. All four alternatives
are studied even though only the second and fourth
cases are likely to occur in hydrologic problems.
Furthermore, for each of these four alternatives there
are four types of run-lengths, as defined previously:
negative-negative, negative-positive, positive-nega-
tive and positive-positive. Only the negative-nega-
tive and the negative-positive run-lengths are treated
in this paper, since the other two run-lengths are
the opposites to these two types and their properties
can be analogously developed.

Bivariate case with serially and mutually
independent series. Consider a sequence of a two-
dimensional process {Xi, Yi), 1w 120005 with

two series mutually and serially independent, each
having the same normal distribution. Given two levels
of truncation, C1 and Cz, the four possible events

can be transformed to a new random variable with
values 0 or 1 as follows:
P(xi H C1 3 Tio%

=P(Xi'1. Yi-‘-l).

2)
P(xi < Cl s Yo > Cz]

PG =1, Y]=0),

= (2-41)
P{Ki > C1 - Y1 < Cz) = P(Xi =0, Yi =1) ,
P[Xi > C1 " Y1 > Czj = PIXi =0, Y{ =0) .
Since X and Y are mutually independent, the joint

probabilities are the product of marginal probabil-
ities, i.e.,

P(X, $Cp, ¥, $C)) = P(X; $C)) P (¥ sC

i 2)'

For the case of the negative-negative run-length, a
new random variable is defined as Z = X'Y', which

has a value of 1 only when X' =1 and Y' = 1, other-
wise its values are zeros. The problem is reduced to
obtaining the probability of the longest run-length of
ones in n trials of the new random variable Z. The
solutions of this case are given by Eqs. 2-15and 2-19.

Similarly, for the case of the negative-positive
run-length, a new random variable is defined as
Vv = X' (1-Y'), which has a value of 1 only for X' =
1 and Y' = 0, otherwise its value is zero. The
problem of obtaining the probability of the longest
negative-positive run-length in n trials of a
bivariate process (xi. Yi}, whose series are mutually

and serially independent, is reduced to the problem

of obtaining the longest run-length of ones in n
trials of the random variable V.

Instead of a transformation to the univariate
process with only two outcomes, an alternative for the
case of two series serially and mutually independent
is to make the transformation to the univariate pro-
cess with four outcomes and obtaining the expressions
for the longest run-length of one kind following the
developments of David and Barton (1962). Consider a
series of n trials, with r, of the i-th kind of a

4
total of four kinds so th.t ] r, =n. David and
i=1

Barton (1962) give a solution for the probability of
the longest run-length irrespective of its kind in a
similar manner to obtaining the probability of the
longest run of one color in a collection of balls of
two colors. Consider a linear array of ri trials

split into t; groups, none larger than g, for i =
1,2,3,4, with all arrangements of the ti groups of

the different kinds, so that no two groups of like
type are adjacent. Denoting this number by c(tl’tz‘

! 1 i~
ts,ta}, it is clear that of the r./rl. b i r4I possi

3
ble arrangements of all the possible trials, the num-

ber of arrangements with no run longer than g is
Gg(rl,rz,rs,r4)
4
=] C(ty,ty.tet,) T G(r,t,.8), (2-42)
e i=1
i
with the summation being over all ti's. It can be

recognized that C(t ,tz,t ,t4) is the coefficient of
t, tz t3z tgl 3

T A T

sion

X in the expansion of the expres-

(2-43)

so that the distribution is theoretically obtained.
It should be noted also that G(ri,ti,g) is the coef-

ti

ficient of x in the expansion of

£,
(x + x° % ..., & xB) % (2-44)
and that
Gg(rl,rz,rs.r‘] y longest run of R1=r1.R2-r2,
Tl either kind < g o R '
rlirzlrsfrdf 3734 4
(2-45)

An alternative to the computation of the C
function is to consider that G(ri'ti’gﬂ) is the coef-

- 3 I, i
ficient of Z in [Gg[zi)] and Gg{rl,rz,rs,rd}

'.l'l '.I.'2 1‘3 I‘4
is the coefficient of 21 22 ZS 24 in the
expansion of
4 sg(zi)
1 = i-]. W (2-46)



David and Barton report that it is easier to evaluate
the C functions.

To obtain the probability of the longest
run-length of one kind, conditioned to the knowledge
of the total numbers of each of the four kinds, a
linear array of the T trials split into t, groups

is considered, with ti not larger than g for i =
1,2,3,4. All arrangements of the t; groups of dif-

ferent kinds are obtained so that no two groups of
like kind are adjacent. Denote this number by
C(tl,tz,ts,t4). It is clear that from all the possi-
ble r!}rll rzl rsl r4! arrangements of all trials,
the number with no run longer than g is

g ;
Gg [rl,rz,rs,rd}, and is equal to

Gé[rl.rz,rs.rd)
4
= Z' C(t)st,,tet,)G(r,,t,8) T G(r,,t,.r,).

i J#i

With the same definition of G(ri,ti,g] as in Eq. 2-42
then

given kind < g |R,=r.,R =T r!

r].'rzlrs r‘

[}ongest run of a R1=r1,R2=r2.]- Gé(rl,rz,rs,r4)

This alternative has the disadvantage of difficult
computations in comparison with the changing variable
approach as showed earlier in this text.

Bivariate case of two series serially independent

but mutually dependent. Consider a sequence of the
bivariate process [Xi,YiJ, i=1,2,....,n with the

series mutually dependent but serially independent
following the normal distribution. Given the two lev-
els of truncation, C1 and Cz. there are four types of

run-lengths, similar as earlier stated. Furthermore,
since X and Y are mutually dependent, their joint
probabilities follow a bivariate normal distribution
and can be easily obtained.

As before, the probability of the longest
negative-negative run-length in n trials can be ob-
. tained by using a new random variable Z = X' Y' and
determining the probability of the longest run com-
posed of 1 of the new random variable. Similarly,
the probability of the longest negative-positive run-
length in n trials can be obtained by using the new
random variable V = X'(1-Y'), and determining the
probability of the longest run of 1 of this new random
variable.

Bivariate case of two series serially dependent
but mutually independent. As for the case of both
series serially and mutually independent, this case
can be treated similarly with the only difference that
the joint probabilities of X and Y, which are the
product of the marginal probabilities

P(X, $Cp, Y, s C

i 2) = P{xi < Cl) P (Yi < CZ}'

take into account the serial dependence by means of

P(X;,15Cy) = P(xi+1scllxigc1)P(xisc1)

+ P(X.

141561 %26 PX2C)),

and similarily for Yi. However, the use of a Markov

chain instead of Markov models is an approximation, so
that the solution for this case is an approximation to
the true solution. The approximation is good for
values of p < 0.4. The probabilities of the longest
negative-negative run-length, and the longest nega-
tive-positive run-length in n trials are obtained by
using the transformed random variable, Z = X'Y' and
V = X'"(1-Y'), respectively.

Bivariate case for two series serially and
mutually dependent. The analytical treatment of this
case is more complex than for the other three cases.
An approximate solution for simple cases is presented
here.

Consider a sequence of a bivariate process
(xi,vi), i=1,2,...,n, whose series are mutually and

sserially dependent, each normally distributed. Given

the two levels of truncation, C1 and Cz, the four

types of run-lengths can be investigated by using the
approximation through a four-state Markov chain, and
with the scheme of transition probabilities given in
Table 2-1 for X, and Yi' or Xi and Yi variables,
respectively.

To obtain the transition probabilities of the
four-state Markov chain, knowledge is required of the
first-order linear autoregressive models, with their
parameters Py and Pys respectively, and the corre-

lation coefficient p between X and Y, assuming
the distribution of the independent stochastic compo-
nents are normal.

Table 2-1 Scheme for Transition Probabilities of
Four-State Markov Chains of X. and Y.,
i i
or Xi and Yi.

Sail Ka€| Rath| Neh
or or or or
Xs,q1 X{ 41" X3,0%0 | xp,,%0
Yiaa|  Yi?C2| YiaCz| Yia’S
or or ar or
¥io ¥}, Yt | Y0
X<y Tistz
2 o L A3 25 24
Xj=1 ¥ie1
X,  YpC,
or or b b, by by
Xy=1 Yj=0
XC,  YsC,
or or cl cz CJ c‘
xj=0 ¥i=1
e, Yt
or or dl ‘3 d.! d‘
"
Xi-n J '1'0

I T TS




The feasibility of using the transformed random
variables, Z = X'Y' and V = X'(l-Y'}, requires (1)
that the marginal distributions of X and Y be
Markov chains, and (2) that the transformed random
variables are also Markov chains. Once these require-
ments are satisfied, it is feasible to use the uni-
variate approximation in determining the probabilities
of longest run-length for series serially and mutually
dependent. The above requirements can be investigated
using the theory on Markov chain lumpability developed
by Kemeny and Snell (1960). A lumped process is de-
fined as the process which can be reduced from a pro-
cess with a large number of states to a process with a
small number of states. The disadvantage is that
lumpability conditions are very restrictive and could
be applied only in a few cases.

Given an r-states Markov chain with transition
matrix P, let A = [AI.Az,...,At} be a partition of
Also let p. = Z p. repre-
i ke ¥

sent the probability of moving from state S into

the set of states.

set Aj in one step for the original Markov chain.

Then, a necessary and sufficient condition for a
Markov chain to be lumpable with respect to a parti-

tion A = (AI,AZ,...,AS] is that for every pair of
sets Ai and Aj, Pia. must have the same value for
every s, in Al. ’

For a Markov chain to be lumpable and to obtain
the lumped transition matrix, the following procedure
may be followed. Assume that the original Markov
chain with transition matrix P has r states, while
the desired lumped chain has s states, with s < r.
let U bea s xr matrix whose i-th row is the
probability vector having equal components for states
in Ai, and 0 for the remaining states. Also let V

be a r x s matrix with the j-th column a vector with
value unity in the components corresponding to states
in Aj and 0 otherwise. If the Markov chain with

transition matrix P 1s lumpable with-Tespect to the
partition A, then the following condition needs to be
satisfied (Kemeny and Snell, 1960)
VUPV = PV ., (2-48)
The lumped transition matrix is given by
P = UPY . (2-49)

" For the case of investigating the lumpability
conditions for the process X of Table 2-1, then

1 01 a, a, a; a4 10
10 Uy Yyg 0 0 b1 h2 b3 b4 10
01 0 0 u23 u24 Cl c2 €3 Cy 01
01 dl d2 d3 dgf {01
a, 3y ag 3, 10

For X to be Markov chain, the four-state Markov
chain must satisfy the four conditions:

By ¥y =hy ¥ By . g Ry iy S
(2-51)
c1 + c: = d] # d2 , and c3 + c4 = d3 + d4 5

Similarly, for Y of Table 2-1 to be a Markov chain,
the four-state Markov chain must satisfy the four con-
ditions:

al+33=cl+cs, ;121-3_4:32#(;4,
(2-52)
bl + b3 = dl + d3 , and b2 + b4 = d2 + d4 .

For the transformed random variable Z = X'Y!
to be a Markov chain, the four-state Markov chain must
satisfy

(2-53)

Similarly, for the transformed random variable V =
X'(1-Y") the conditions are

a = b3 = d3 i (2-54)
Another way of approaching the problem of a
sequence of a bivariate process [xiYUi}, i= 1,2,.(.,n.

for the two series mutually and serially dependent, is
by considering the marginal distributions of each pro-
cess. For the process X, the corresponding Markov
chain has the scheme of transition probabilities given
in Table 2-2.

Table 2-2 Scheme of Transition Probabilities of
Markov Chain for the Process Xi.

o S
Xi+lscl' or hi+1 1 xi+l>cl’ or ki+1 0

Rgsby o XK= P11 P1o

e Po1 Poo

For the process Y, the corresponding scheme of
transition probabilities of the Markov chain are given
in Table 2-3.

Table 2-3 Scheme of Transition Probabilities of
Markov Chain for the Process Yi.

1 = - [ .
Yi+15C2’ or Yi+l-1 Yj+l>L2, or Yi+l o

¥, 805, or Yixi ap, 0

R R o1 990

"

Furthermore, the joint probabilities can be obtained
either by using a table of bivariate normal distribu-
tion or by integration as

p[xi>c1 " Yi>02] = P[x; =0, YI=0]=pP

% 0o’

PIX;>C; , ¥;<C) = P[X! =0, Y] =1]

P
01 *  (2.55)

PIX{ =1, Y]=0]=P),

PIX{<Cy , ¥,C,]

P[XiECI 3 Yifcz] P[K% =1, Yi = 1] = P]l "



The matrices of transition probabilities for X and
Yi are obtained by means of

PIX!,, = kX = i)
PEX] = J]

PIX{,, = k|X{ = j] = (2-56)

To obtain the probability of the longest negative-
negative run-length in n trials in this bivariate
process, the new random variable Z = X'Y' is ex-
pected to be also a Markov chain, with the scheme of
transition probabilities given in Table 2-4.

Table 2-4 Scheme of Transition Probabilities of
Markov Chain for the Process Zi'

21+l =0 21+l =1
Zl =0 Al A2
Z1 =1 Bl 52

The transition probabilities are obtained as

Ay =Pz, = 0]z = 0] = 1-P[Z,,; = 1|zi = 0]
1 P(z;,,71,2;=0] ’ l_p[zm=1] - P[2,,,°1,2.=1]
- P[z; = 0] 1-P[Z,=1]

1-P[z,=1]-P(2, =1] + P[Z,,,

1-P[Z,-1]

= 1|zi=1] Plz=1]

= b I [ = ¥ v & 1 W "o =
1-P[X1=1,Y[=1)-P[X] .=1,Y1  =V]+P[X! =1,Y}  =1,XIa1,¥!=1]

+1

1-P[x}=1, Y}=1]
(2-57)

The four-variate joint probability of Eq. 2-57 can be
obtained by integrating the quadrivariate normal dis-
tribution for the parameters of the underlying model.

Then Az =] - Al. The probability B1 can be ob-

tained similarly by

Pl =L Y4y

P[Ki =1, Y| = 1]

=1, X =1, =1]
By = 1

. (2-58)

leth 32 =1 - Bl'

With the transition probabilities of Z
determined, the probability of the longest negative-
negative run-length in n trials can be obtained by
using these transition probabilities and the expres-
sions developed for the univariate dependent case,
Eqs. 2-35 and 2-37.

lTo obtain the probability of the longest
negative-positive run-length in n trials, the new
" random variable V = X'(l-Y') is expected also to be
also a Markov chain. Its scheme of transition prob-
abilities are shown in Table 2-5.

In a similar way to transition probabilities of
Z, the transition probabilities of V are obtained as

| 1=PIX] = LY{e0)-PIX) =LY =00 +PIX] 1 #1, Y, 1+0, Xjel, ¥e0]

L 1-P[X!=0, Y! = 0] '
1 1
(2-59)
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Table 2-5 Scheme of Transition Probabilities for
Markov Chain of the Process V.

Ve ™ # Vigp =1
v, =0 F F,
v =1 G, G,
and
PX! . =1, Y! .=0, X!=1, Y!=0]
G, =1- L Wi 2 i Sl S PR
PIX! =1, Y! = 0]
1 1
with Fz = 1—F1, and G2 = l-Gl'

With the transition probabilities of V known,
the probabilities of the longest negative-positive
run-length in n trials are obtained by using these
transition probabilities and the expressions developed

for the univariate dependent case, Eqs. 2-35 and 2-37.
-

2-6 Integration of Quadrivariate Normal Distribution

To integrate the quadrivariate normal distribution
function, as needed for Eqs. 2-57 through 2-60, con-
sider a multivariate n-dimensional stationary Gaussian
process whose distribution is

wl-3 ] 1 i
a..X.X Jc
j=1 k=1 K

" an ii/I r j=1
(2-61)
with all components Xl, xz,...,xn having zero mean

and unit variance, |R| the determinant of the correla-

tion matrix of these components, and ajk the ele-

ments of the inverse of this correlation matrix. Re-
viewing the literature on integration of the multi-
variate normal function, presented by Saldarriaga
(1969, 1970), it was found that no explicit expression
is available for the general solution of this integral.
Solutions exist only for special cases. BSaldarriaga
(1969, 1970) gave a solution following Kendall (1941)
for the probability of run-length for an infinite pop-
ulation in the case of dependent univariate case.

The tetrachoric series expansion, for the
trivariate case, is given by Kendall (1941). It was
extended by this writer to the quadrivariate case
under study. For simplicity, the following notation
is used: the first Ki in the first series is desig-

nated by 1, the second X in the first series is

i+l

designated by 2, the first Yi in the second series

by 3, and the second Yi+1

Also whenever the integration goes from the truncation
level to infinity the index (+) will be given to the
corresponding variable, and (-) for integration from
-= to this level. The truncation levels are C. and

1
CZ’ Since the underlying model is a bi-
variate first-order linear autoregressive model, the
serial correlation coefficients are Py and Pys

in the second series by 4,

respectively.

respectively for series 1 and 2, and p 1is their
cross correlation coefficient. Then
o o -] o

(2-62)

p(1%,2%,5%,4") = é] é éz é dF .
1 2

e



Making use of Saldarriaga's developments, this
expression can be evaluated by using Hermite polyno-
mials

1 Alp,i)n(H),

5 -
PI1%,2%,5%04% = 0 F(E) (2-63)
- i=0
in which
pz mon P4 ar
Ao, d) = 12°13 P14 P23 P24 P34 |
Psll = Liminlplqlr! Lerod)
i=g8+m+rneperq+r, (2-65)
and
M(H) =H, .(C.)H, ,(C,)H (C,) H (c,),
§.717717 T8,-17T1 TSL-1 P27 TS, =172 (2-66)
with
51 = ilz + 113 o @ ou W iln =L +m+n
52 = 112 + i * anoaow b i2n = L+p+q
o kN w oo (2-67)
g " TR T R I in-l,n .
Since the definition of the Hermite polynomials
applies only to r = 0,1,2,..., its values are
Hocci] =] ]
H, Q) &G, »
A (2-68)
Hy(C,3 ~i€2 =1
= 8 < Y
Hy(C,) = €3 - 3¢, .
For the case of r = -], ”-l(ci] is defined by
1-F(C;)
H-l[cil = _?TE;T_ (2-69)

Equation 2-63 is an infinite series. However, in
practical applications it is desirable to restrict

the series to a few terms. A truncation of the series
after i = 2 is used in this study, implying that
terms of the third order and higher orders are negli-
gible. The error introduced by the polynomial trunca-
tion is negligible for small values of Py

After developments and simplifications, Eq. 2-63
becomes

1-F(C, JJ[1-F F(C,
TR M5 A0 1 N (cl}f‘cc ){[ ):r[ c.] “'E?(c ,T

1- I-(C - F[C,,J »FfC 1 1 1 1-F(C.}
j'?wﬁ' ’"1“1*“'TP1‘ 1 U oy

IFE 1] [-Feep L|-FEep R S (2-70)
a5 LTy (2 o] o3te” + o7 (o ] e

" FIC,
. .p ‘l’l v C

1-F(C.} 1-
m] L—B 2+p) 2 0,0 -,91 «C [-r{t-‘—
1-F(C,)
il )

1= F[C
[n LR 92] + G ['TF] ls LN iz]}

-]
{2040 *pgp *04p0]

The transformations that are used later are

it 2" aT4% = et gAYy -ttt @
RIS AN e BT ST - BT A
pr1*,2%,37,4% = p(1%,2%,4% - P02%.2%.50.4%).  (2-73)
el 23047 = pd 23T < Bt a8t AN

and the necessary probabi:ities are obtained as dif-
ferences of probabilitie of four trivariate cases and
one quadrivariate case. The definite expressions are
of the same length as Eq. 2-70 and are obtained in the
same way.

To obtain the probability of all four variables
being negatives, the same procedure with the following
changes is used, namely for

C C C C

1 1Y

P[17,27,37,47] = dF , (2-75)

by using the tetrachoric series expansion as,

pl1,27,57,47] = fz{CI}Fz{CZ) 5Zo A(e,i) 7C(H), (2-76)
j=

in which A(p,i) is the same term as defined by Eq.
2-64

o = [ettg 4 €1 [Hg L €)ITHg ; (€)]

[-Hg _, (C,)]. (2-77)
4

For this case, the negative Hermite polynomials are:

F(C,)
S Y
STN IS IS G (2-78)

-H, (C;) = -C,

The truncation of the expansion of Eq. 2-76 is also

made after 1 = 2, with the corresponding error in-
volved. With the above considerations, Eq. 2-76 be-
comes

= e F(0,) Fey
s « Beprieg| [ ][: _
| 34 ] = f {Ll]f { _,1{ l[C j ;)- L ?l‘-)
FCAre . F(c; 2.2 P(Cj
R K [20+p0400,] ¢ 0, ) O
Fec, ) [ Fc,) Fre, )2
. 1 1) S TP T T | b 2,2
CICE[I[CIJ][?(E_E]][" *00) 9951 * °:cz[ﬁc'_!j‘]] Loy P e RyRy

F(C,) F(C,) 3
2 2 1 2 -
- C:[fuczi]I2°1°‘°1“'°“2”1] . Ez[%TE;T]E2°2"°z°'°1°:’] i

2 2 [C ) F(C,)
- Le%2,*0%p,] |-C m 2[ﬂc }] r

12



Similar transformations to Eq. 2-71 through 2-74 are
used for the negative case, namely:

P(1%,27,37,47) = P(27,37,47) - P(17,27,57,47), (2-80)

P ,2%,57,47) = P(17,37,47) - PQ1T,27,57,47), (2-81)
P(L7,27,8°,47) = B(17,27,47) - P(17,27,57.470), (2-82)
4 S St b R B S o (O e G i T

The final expressions for Eqs. 2-80 through 2-83 are
similar to those of Eq. 2-79.

To obtain p(1',2'.3*,4*), the procedure is
similar as followed in previous cases, namely

c [ oy @ o
5 e, [0 GOSN G BT
B B

2 2 v 4 56 ?
= £7(C)f (chigontp,zln {uclnn(ucz),
(2-84)

in which A(p,i), *°(H), N(H) are defined above.
After replacing terms and simplifying,

L 5 3 F(C ]2 [1-F(C,)]2

PI17.27,57,47) = £CDFC [y | 7mD

2 1 2
|-F[c2) 2 F{clJ l-F(C2)

‘0, _¥TE;T_ . ?TEIT *?TE;T_ (240 +0,)
1-F(C,) F(C)) 1
2.2 2 1
chl[' {:(cz] ] - cl[f(cl)] CZ[

P
* flFEyl !
F

2. 2 2 CPR - = 3
o (2+pl+sz * P, ?TEIT C2 * PPyt 0P,

L o

-F{czj]
£(C,)

1-F(C,) [F{Clj
+ C, _?TE;T_ ppy (240 %0,) - ?TEIT Cp0 (240,40, )

g, 5 1-F(C,)] ,
- ?TE;T C1° (°1+°2] + C2 —;TEET—-O [pz+n])

Similar expressions are obtained for P(1 ,2°,37,47),
pQ1",2",87,47), P01°,27,87,47), POLT.2,37,47), and
BT o

(2-85)

The sixteen expressions thus far developed for
the joint probabilities were programmed for computa-
tion by a digital computer, and the transition prob-
abilities of Table 2-1 were computed.

For testing the accuracy, the bivariate case is
used, with the approximation available in the Hand-
book of Mathematical Functions (Abramowitz, 1955) for
the bivariate standard normal distribution, namely

L(Cy,C55p) = Q(CIQUC,) + _El
i=

i i
2 (€6,)Z" () i 2e86)

il
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in which

n
Z(x) = g,

dx

n 2

Ao - (Lo ).

dx Van
Although Eq. 2-86 is an infinite series, for this test
the series was truncated at i = 5 and the approxima-
tion was compared with the values given in Tables for
the bivariate normal distribution, finding the approx-
imation adequate. For the case of Py 2?2 0.4, i

»

should be greater than five. The bivariate case ob-
tained from expressions for the sixteen joint prob-
abilities were compared with bivariate case obtained
by the above approximation. It was found that the
approximation presented for the quadrivariate normal
case was good for each Pyr Pyo and p less than 0.4,

When py was greater than 0.4, it is noted that the

row values of transition probabilities do not add up
to unity.

Therefore, the approximations give the
probabilities in case of the quadrivariate normal dis-
tribution, that are valid only for small values of p,
P and Py These results may be used to evaluate

results obtained by Eqs. 2-57 through 2-60 as well as
to obtain the transition probabilities of Table 2-1,
thus producing approximations for probabilities of the
longest negative-negative and the longest negative-
positive run-length in n trials for the case of
mutually and serially dependent series of the normal
bivariate process.

2-7 Probabilities of Largest Run-Sums in a Sample
of Size n.

The analytical treatment and necessary
approximations for probabilities of the largest run-
sum in n trials are presented here in the general
form. The case of the largest run-sum not exceeding a
given value in n trials is more complex than for the
case of longest run-length of a univariate independent
normal process, It is still more complex for a uni-
variate dependent process. The run-sum case of the
bivariate independent or dependent process is expected
to be also very complex, The problem of probabilities
of run-sum has not received very much attention in
statistical literature. The problems of hydrologic
droughts have stimulated this type of study recently.
Because of various problems involved, the simple case
of univariate independent standard normal process is
used first in studying here in the probability of
largest run-sum in samples of given sizes. The first
study of the run-sum seems to have been done by Downer,
Siddiqqi and Yevjevich (1967) for the run-sum distri-
bution of an infinite stationary and ergodic popula-
tion.

The following random variables are of interest in
hydrology for the case of a univariate process, as
defined by Millan and Yevjevich (1971):

Ln , the longest negative run-length in n
trials,
sn , the largest negative run-sum in n trials,
Ln s the negative run-length corresponding to
i the largest negative run-sum in n trials
and,
Sn g the negative run-sum corresponding to the
* longest negative run-length in n trials,
as well as,



the ratios S

L

n,% n n,s
drought severity. First, the largest negative run-
sum in n trials is investigated.

and Sn/L as measures of

For the case of the unt-dimensional case of
independent, identically distributed normal random
variables, a truncation level is selected so that

q = (2-87)

P[X;<C] = P[X}=1] = F(C),

and
Pl e 1 =2FE)

A negative run-sum corresponding to a negative
run-length of size n is defined by

n
s = .X (C-X,) » (2-88)
i=1
while the largest negative run-sum is
Sn = max[max[SlJ, max{S:},‘..,max(Si)}, (2-89)

in the above notation.

where max(sz) = Sn,l

The largest run-sum in n trials, S , is

n

obtained from a, negative runs of length 1, a,

1

negative runs of length 2, up to a, negative runs of

length £, where & 1is the longest negative run-

A
length in these n trials. Then X a; is the total
i=1

number of negative runs in n trials. The maximum or
largest run-sum of each of the run-lengths,
i=1,2,...,4, is obtained and the maximum amongst
them is the largest run-sum in n trials. Let define

FC)-F(x)
F(C)

F(x)
F(C)

P[X#sx] = F*(x) = 1- » for xsC,
: (2-90)

with

P[XISX] = F*(x) = 0, for x>C, (2-91)

F*(x) is the truncated normal cumulative dis-
The following notation is

where
tribution function of Xi.

adopted, following Downer et al., (1969): M* is the
moment generating function of Xi; k* = log M* is the
.cumulants generating function, and L2 is the r-th

cumulant of Xi, so that

vX, Ll [
M*(v) = E[e '] = [ " dF*(x) = - % [ a%ar(x), (2-92)
- -0
with
VX ”
«*(v) = log M*(v) = log ] p.e - (2-93)
X
After replacements and simplifications, Eq. 2-93
becomes
o r - T 2 = 1
v 1 v i v ”
NP f ) Rl -
rzl el P 2 $a] rl sul T¢ F
(2-94)
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as the cumulants generating function, In particular,

equating like powers of o then
eyl =
K] = H E[X] .
2
KE = ui S M My = Var[X] ,
and
kE o=l o= 2ptpt o2t sy (2-95)
3 3 2.1 1 3

Since for this apprcach knowledge of the
distribution of the run-length is required and the
distribution of the run-length corresponding to the
largest run-sum is not known, then only the distribu-
tion of the run-sum corresponding to the longest run-

length is looked for analytically.

Let M(p,v) and «(u,v) be the joint moments and
cumulants generating function of the longest negative
run-length in n trials, B4 and the corresponding

Tun-sum, Sn e Since the joint moment generating

»
function is defined for any two real numbers u and
v by

an+vSn] - E {[ean] E [evSann]} ,

(2-96)

mG ,S {HJVJ = E [a
n°n

and making use of the expressions developed for the
longest run-length in n trials earlier, Eqs. 2-12,
2-15 and 2-17,

ug s |G, =g
mg g (w,v) = E{e ¢ pl6 ] E|:e e d} . (2-97)
n’"n . g5

Since the moment generating function of the sum of
independent random variables is equal to the product
of their moment generating functions, then

vS5 g g, logM*(v) g grliv)
E[e 8] = [M*(v)] 9 = e 9 .ed . (2-98)
or

HE g, k*(v)

mg s (wv) =41 e “P[G, = gdj}e L @)

n’'"n 84
and

(2-100)

G S (u,v) = log me S (u,v).
n’'"n non

The individual cumulant generating functions can be
obtained by
Be CUY = (2-101)

6 .8 (u,0),
n n n

and

kg (v) = (2-102)

< .5 (0.

n n'"n

The parameters of these distributions should be
obtainable by differentiating at the origin. However)
because the joint moment generating function cannot be
reduced to a simple and recognizable expression, they
cannot be obtained easily. Faced with these difficul-
ties, the investigator can only use the experimental



method to obtain the required results. The purpose of
the above development was to show that even in the
case of run-sums in ' n trials for a univariate inde-
pendent identically and normally distributed random
variables is not simple. Tﬁarefore, the more complex
cases of univariate dependént, and the two-dimensional
independent and dependent cases, being still more com-
plex, do not yield themselves to easy analytical solu-
tions. The experimental statistical method seems the
only alternative left at present, and it will be used
in all these cases in the further text.

2-8 Run-Length Distributions for Infinite Populations
of Univariate Cases

The runs of an infinite population are studied
similarly as for the runs of given sample sizes.

Univariate independent process. The distribution
of run-lengths of a uni-dimensional sequence of inde-
pendent identically distributed normal variables is
the same as the distribution of the number of trials
required to obtain the first success in a sequence of
repeated independent Bernoulli trials in which the
probability of success at each trial is a constant, p.
This distribution follows the well known geometric
probability function. Downer, Siddiqqi, and Yevjevich
(1967) studied the distribution of the positive and
negative run-lengths and applied it to the normal
variable. They used the data generation method to
check the analytical sclutions developed for the inde-
pendent standard normal variable. For this distribu-
tion, the constant truncation level C of the sto-
chastic process Xi was replaced by its probability

q = P[xi < C], with p = 1l-q = P[xi > C]. (2-103)

By this replacement the properties of run-length when
expressed as function of the probability q become
distribution free, or independent of the underlying
distribution, F(x). Therefore, the probability dis-
tribution function of run-length becomes

P[K=k] = P[xl £ G xz < c,...,xk $C Ky c|xl
< CJP[X, s C] + jglP[xi > Cd o= Lewdi Xjy
3 ol G P xMH1 > ch1 > ¢].
PIX,>C],

- or

k-1
P[K=k] = pq~ °,

with E[K] = 1/p, and Var[K] = q/pz.

(2-104)

Llamas (1968) studied the case of the standardized,
one-parameter gumma independent random variable, with
the probability distribution function

X a+l
F(x) = /L a(ast/a) T cast/a g (2-108)
-ry

I'(a) y

which, for the truncation level C = 0, gives F(0) =
P(a,a) = p, where P(a,a) is the incomplete gamma
function or

a
Fiife)] ssber T o g® iy |

e (2-106)

(=]
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Gabriel and Neumann (1957), in studying the
distribution of a weather cycle, investigated the dis-
tribution of the total run-length (the negative run-
length plus the continuing positive run-length) by
assuming that the negative run-length is independent
of the positive run-length, and that both follow the
geometric distribution. For X representing a posi-
tive run-length and Y a negative run-length, each
having the positive integer events as discrete random
variables, their probabilities are

PIX = k] = ;0" = (-p e T,

) ) (2-107)
PIY = m] = q,(p,)™" = (1-p) (o)™,

with p, +q, =p, +q, =1, and p, #p,, q ¥ q,,
where P, is the probability of a positive value to
be followed by a positive value, P, is the probabil-

ity of a negative value followed by a negative value,
q, represents the probability of a pesitive value to

be followed by a negative value, and q, the proba-

‘bility of a negative value to be followed by a posi-

tive value. Even though the run is not defined in
the paper, it is easy to infer that the definition of
runs given by Feller (1957) was used. Let Z repre-
sent the total run-length, equal to X + Y. Then its
probability is

P[Z = n] = (n-1) (1-p)? p*~2

(2-108)

Univariate dependent process. For the univariate
case with a dependent series, the distribution of the
run-length has been obtained in two different ways.
First, by approximating the dependent series of the
first-order linear autoregressive model by the corre-
sponding Markov chain. Second, by using a truncation
on the infinite series of the tetrachoric series ex-
pansion of the integral when the underlying process is
normal .

The first approach was used by Cox and Miller
(1965) giving the distribution of the recurrence time
of state (0) in the two-state Markov chain, (0) and
(1), with the transition probability matrix

This distribution is equal to the run-length of state
(1) plus unity, presented as

=)
P[K=k] = aﬂ(1~3Jk “, for k = 2,3,...,

(2-109)
and
P[K=k] = 1 - a, for k = 1 . (2-110)
The mean recurrence time of state (0) is
E(K) = &2 . (2-111)

Heiny (1970) defines the transition probabilities of
two states as

P{xi>c1xi_1>c1 =T,

T

e o

O B T




and

PIX, sC|xX, ;>Cl=1s,

with r + s = 1. With the Markov chain approximation
to the first-order linear autoregressive model, prob-
abilities, the expected value and the variance are

P[K=k] = st }[1 + 0 (03], k = 1,2,..., (2-112)
E[K] = = [1+ 0 (o], (2-113)
and
2 2
var [K] = 5 1+ 0 (9], (2-114)
5

with Gfpz) the error term becoming negligible for
small values of p.

The second approach in considering the first-order
linear autoregressive model is studied by Saldarriaga
(1969, 1970). For this type of univariate dependent
process, the development of the distribution of run-
length requires the joint probability distribution of
variables Xl, X,,..., assumed by Saldarriaga to be
multivariate nor%al. For example, to_find the prob-
ability of the negative run-length J it is neces-
sary to integrate
PLIT =P[X) £ C, X, 8 CyovisX; € €] EE. [,

—t0 -0 —on

2

and

P[K2Kk] = P[J"] + | P[k", J7]
k=1

with dF given by Eq. 2-61. The general solution of
the multivariate normal integral is not available,
except through the tetrachoric series expansion, given
by Kendall (1941), for finding the approximations to
exact solutions. The use of the experimental statis-
tical (Monte Carle) method permitted to check the
above approximations, which were presented by
Saldarriaga (1969, 1970) in the form of graphs and
tables.

2-9 Run-Length Distributions for Infinite Populations
for the Bivariate Case

Similar as for the bivariate case of the
probability distribution of the longest run-length for
. a given sample size, the same four alternatives are
investigated for the probability distribution of the
run-length of infinite series for the bivariate case:
(1) series are serially and mutually independent,

(2) series are serially independent but mutually de-
pendent, (3) series are serially dependent but mutu-
ally independent, and (4) series are both serially and
mutually dependent. Similarly as for the longest run-
length, only the negative-negative and the negative-
positive run-lengths are treated in this paper. Also
the bivariate case is reduced to a univariate case by
using the transformed variables.

Two series serially and mutually independent.
The case of two series being serially and mutually
independent can be treated by transforming the origi-
nal variables to random variables with 0,1 events,
which corresponds to P(X' = 1) = P(X £ C) and
P(X' = 0) = P(X > C), and similarly for Yi. Let con-

sider a sequence of a bivariate process, (Xi.Yi], is=
1,2,..., with the two variables having the same
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distribution and being serially and mutually

independent. For levels of truncation C1 and C,»
four runs are NN, NP, PN, and PP. The joint prob-
abilities are the product of marginal probabilities.

The distribution of negative-negative run-length
can be obtained by means of a transformation to a new
random variable Z = X'Y', with Z = 1 only when
X' =1 and Y' = 1; otherwise it is zero. The dis-
tribution of Z is:

- z _ l-z - =
fz{z} = (plpz} (1 plpz) , for z =0or 1, (2-115)
which is the Bernoulli d.stribution with pl = Fx(cl)
and Py = FY(CEJ. The probability distribution of the

run-length is a geometric distribution

k-1
fNN[K) kd [P].sz (l-pIPZJ) for k = 1,2,.0, (2-116)
with
K] =t 4 Var[K] = — 252 2-117
- 1pp. an ar[K] = ok (2- )
1P (1-p;p,)

The negative-positive run-length distribution can
be studied similarly. A new random variable V =
X'(1-Y') is such that V = 1 only when X' =1 and
Y' = 0; otherwise it is zero. Its distributiom is

v 1-v
fv(v) = [pl (l_pz}] [l'Pl(l'Pz}] » for
v==00rl, (2-118)
which‘is the Bernmoulli distribution. The probability
distribution of negative-positive run-length is the

probability distribution of the run-length of V =1
and is

£p(®) = o, (1-p,)1¥F [1-p, (1-p,)], for

s TBimen (2-119)
with
E[K] = qoiimy @ Ver(K] = —————. (2-120)
Py R [1-p, (1-p,)]

Two series serially independent but mutually
dependent. For two series serially independent but
mutually dependent, a similar way may be used as for
the independent case. Consider a sequence of a bi-
variate process (Xi,Yi), i=1,2,..., with two vari-

ables of the same distribution but mutually dependent
while serially independent. For the truncation levels

C1 and C,, the four types of runs can be investi-

gated with the joint probabilities of X and Y

given by the underlying bivariate distribution, say
the bivariate normal. As for the independent case,
the probability of the negative-negative run-length is
obtained from the variable Z = X'Y' by obtaining the
probability distribution of the run-length of Z =1
of the new random variable Z, which distribution is
geometric

k-1

By (K) = [Fy y(C;s €)1

[l-Fx,Y(Cl,Czl}, for

K = e (2-121)



with F(X,Y) the standard bivariate normal. Similarly,
the probability of the negative-positive run-length is
obtained from the variable V, for V = 1.

Two series serially dependent but mutually
independent. For two series serially dependent but
mutually independent, the analysis is similar to the
case of series serially and mutually independent,
This difference is that the joint probabilities must
take into account the serial dependence in Xi and

Yi. Probabilities of the negative-negative run-length

and negative-positive run-length are also obtained
from the variables Z and V, respectively. These
solutions are approximate only, since the Markov chain
is also an approximation to the first-order linear
autoregressive model.

The approximate integration may be used in this
latter case by the tetrachoric series expansion, with
this approximate solution less accurate than in the
above approach. The negative-negative run-length has
probahilities

P[xl < Cl. Yy ¢ C2; X, % Cl, Yo 2 Oobes

2 2 2 k
< Ll yk < CZ] - P[xl < C], X, % CJ, Xy
s €] Ply, £ Cyu vy 5 Chsnnnnyy £ G
C € C € ¢ K C
1 1 1 2 2 i 2
ff P g PP oo ff s
- -0 -0 -0 -0 -0 - 0

(2-122)

where dF 1is the multivariate normal integral of

Eq. 2-61. Using the univariate dependent case given
by Saldarriaga and Yevjevich (1970), probabilities

of negative-negative run-length are obtained by multi-
plying the marginal probabilities obtained and given
as tables for a given parameter of dependence. Prob-
abilities of the negative-positive run-length are ob-
tained by the same procedure, because

P[x1 < Cl, yl >C2; x2 E Cl’ y2>C2;...; Xy < Cl’ yk>Cz]
[ c C o w0 oo
1 1 1
SR L I y
i e 1 Cz c, Cz dF2 . (2-123)

Two series serially and mutually dependent.
Analytical treatment is much more complex for two
series mutually and serially dependent. Approximate
analytical solutions are presented in this paper. The
degree of approximation can be determined by using the
experimental method.

Four different approximations are given: (1) by
considering the Markov chain lumpability, (2) by using
the Markov chain approximations for the two processes,
then determine the Markov chains for the transformed
variables; (3) by considering a four-state Markov
chain, and (4) by approximate integrations using the
tetrachoric series expansion.

For the Markov chain lumpability approach,
consider a sequence of a bivariate process (Xj,Yi),

i=1,2,..., with two series of the same normal dis-
tribution, mutually and serially dependent. By con-
sidering the four-state Markov chain of Table 2-1,

first the lumpability for this chain is investigated
both for the marginal distributions of X and Y, as

well as for the transformed random variables Z and
V. If found lumpable into a two-state Markov chain,
it becomes feasible to find probability distribution
functions of nmegative-negative and negative-positive
run-lengths by using the variables Z and V, respec-
tively,

For the Markov chain approximations approach, the
marginal distributions of X and Y are only consid-
ered, with their series dependence approximated by
Markov chains, and transition probabilities as sche-
matically represented in Tables 2-2 and 2-3, and ob-
tained for the Z wvariable by Eqs. 2-57 and 2-58,
which require the solutions of a quadrivariate normal
distribution. By computing the transition probability
matrix of Z, probabilities of negative-negative run-
length are obtained by using the equations developed
for the univariate dependent case, Egs. 2-109 and
2-112. Similarly, probabilities of negative-positive
run-length are obtained by using V, and Eqs. 2-109
and 2-112, with transition probabilities of Table 2-5
computed by Eqgs. 2-59 and 2-60.

For the four-state Markov chain approach, let
. consider the four-state chain as represented by Table
2-1, obtained as approximations using the tetrachoric
series expansion.

The matrix of joint probabilities U 1is obtained
either by integration or from tables of a bivariate

normal distribution, or from the four-state Markov
chain Q, with

- oF
Y=Y . (2-124)

The vector U of joint probabilities gives

U011 = B[, 2055 ¥, £ 650

U (0,1) = P[X;>C, , Y, sG],

U, (1,0) = P[X; s Cp, Y, > G, (2-125)
U (0,0) = P[X, > Cp, Y, >C)l.

Probabilities of negative-negative run-length are
schematically represented as

el P
t 8 !
at least at least
one 1is zero one is zero

They are obtained by considering all possible events
by F

k-1
P[NN] = al [H{G,Ojdl(az+as+a4) + U(0,1) L1(32*33*34)

+

u(l1,0) bl[a2+as+aq}}

k-1 . .
a;”" (1-a)) [U(0,0) d;+U(0,1) ¢,

]

3§

U(1,03b,]. (2-126)

Similarly probabilities of negative-positive
run-length are represented by
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0 0... 0
P ;
%1 A o’ 1

k

where the pairs shown with arrows can be (0,0), (1,1),
or (1,0). Probabilities are obtained by considering
all possible events, as

P[NP) = cg"(l-ch (U(0,0) dy + U(L,0)by + U(1,1) a,].
(2-127)

For the tetrachoric series expansion approach,
based on the fact that no explicit expression exists
for the general solution of the multivariate normal
integral, the approximated solutions are obtained by
using the tetrachoric series expansion. This case is
similar to the solution given for the univariate case
by Saldarriaga and Yevjevich (1970), Probabilities of
negative-negative run-length are obtained as follows,
The negative-negative run-length of k = 1 is equal
to F(l ,3 ), in the nomenclature used for the quad-
rivariate normal integration. The negative-negative
run-length of k = 2 is P(17,27,37,47). The nega-
tive run-length k 1is obtained by generalizing Egs.
2-75 and 2-76 for the multivariate normal case.

Probabilities of negative-positive run-length are
obtained in a similar way. For the negative-positive
run-length for k = 1 it is P(17,3%), for the nega-
tive-positive run-length of k = 2 it is P(1 ,2,3%,
4*), as given by Eq. 2-85; for any negative-positive
run-length they can be obtained by generalizing Eq.
2-84.

It should be stressed that in this approximation
if a truncation in the tetrachoric series expansion
after i = 2 is made this implies that the terms con-

taining 03 or higher powers of p can be neglected.
The error introduced, however, is small and can be
assessed by using the experimental statistical (Monte
Carlo) approach,

2-10 Probability Distributions of Run-Sums of Infinite

Series

Univariate case, It was shown in Section 2-7 that
finding the distributions of largest run-sums in a
given sample is complex even for the simple case of
univariate independent normal process. For run-sums
of infinite series the same difficulties are encoun-
tered as for the largest run-sumof a sample. For the
univariate independent normal process, Downer et al.
(1967) give the exact properties of run-sums using the
cumulants. Few first moments of the distribution of

Tun-sums can also be obtained from the crossing theory.

Llamas and Siddiqqi (1969) summarize the essentials of
the above paper, some results reported in a strength-

ened form, and some new results included. A truncated
distribution was used for the negative run-sum, namely

. E(C) - F(C-x) ;
Fl(x} F(C) 1€ 0
and Fl{x) =0, ifc>0 (2-128)
with
Fi(x) = P[C - x, 5 xixi 3¢ [

with
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The probability density function of run-sum for a
more general case is given by Heiny (1968) in an ap-
proximate way using the two-parameter gamma probabil-
ity density function and the associated Laguerre poly-
nomials. The two parameters of this gamma function
are estimated by equating the first two moments of
run-sum with the first two moments of the gamma func-
tion, with

=202 =,
z/2g zh/Z 1

Qz;g:h) = —pr—p— 5 Tor T9°% Oy
(2g) r[gﬂ
E[Z] = hg , and Var[z) = 2g2 h,  (2-129)
where
pK1+qI(_’ 2c
g = ——EE;I— and h = EE;:HE; (2-130)
with p = F(C), q = 1-F(C) and «, and k., the first

1 2

two cumulates. If a greater accuracy is required the
approximation can be improved, Siddiqqi (1960), by
using the associated Laguerre polynomials as shown by
Heiny; however, no explicit expression is obtained.

For a univariate dependent process, it is more
complex to obtain the exact distribution and param-
eters of the run-sum. Approximate expressions for
parameters are obtained by Heiny (1968) as

2
ES,) = (ny + Z-my + mm) (1 + 006D, (2-131)

r and s the same as in 2-112, and m

Eq. 1"
mz, and m3 the moments of the random variable Yi

whose density function is given by

GYi(yi} = Plxi-Csyj|Xl>C, X,>C,unny X 3C, xn+ISC]’ if
¥y 0 (2-132)
= 0 elsewhere,
and
n
S, * E ¥, »

i=1

The variance of the run-sum is given in approximate
form also by Heiny as

2
2 2
%r g, 0% ARy

2
Var[SnJ = {61 + 5 3 1t 2r Ty

2 3 4
1-5-25"+35" -5
s 3% E My > 2

23 2
. 26Q-28) 2 2

s2r2 mnc} {140(%)} . (2-133)

Bivariate case. As shown in the preceding text,
distributions of the run-sum are not simple to obtain
as in the case of run-length, even for simple pro-
cesses. The bivariate case is expected to be even
more complex than the univariate case. Similarly as
for the run-length, four cases, NN, NP, PN, and PP,
for each of the four bivariate cases should be inves-
tigated. Approximate expressions have been found for
parameters of run-sum distributions for the serially



and mutually independent, serially dependent but
mutually independent, and serially independent but
mutually dependent, but have not yet been investigated
for mutually and serially dependent processes. Most
of the approximations were developed by Heiny (1968)
for the univariate case. However, the degrees of
approximation are not shown since the experimental
method was not used.

The negative-negative run-sums are composed of
the negative run-sum of each sequence over the common
negative-negative run-length. The run-sums are not
for the complete univariate runs.

The case of mutually and serially independent
components of bivariates, as analyzed by Llamas (1968)
and Llamas and Siddiqqi (1969), has

E(S,,] . S,.1 adid L (2-134)
11 1-plp2 g 21 1-p1p2 #
(1-p,p,)Var(X}) + p;p,[E(X]]°
Var[sll] = 5 s
(I'Plpzj
(27139
(1-p,p,) Var[Y$] + p,p,[E(Y])]
Vaz(s, ] = —12 Lt ot LW
[I'Plpz}
and
p,P,E[X}] E[Y}]
Cov[s,;.S,,] = T E———1 (2-136)

tl'plpz)

Llamas (1968) gives parameters of the standard normal
variable with the truncation level of the population
mean.

The serially independent but mutually dependent
bivariate case, studied by Llamas (1968) and Heiny
(1968), according to Heiny has the following param-
eters of the distribution of positive run-sum
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o 1
E(S;) = g% » EIT)=g)

(2-137)
q 1

1’

: s 2 1 2 1
var(s, ] L K] * g%y »and Var(T ] = ks N TR

A (2-138)

which %1 and Ky and Al and Az, the first and

second cumulants of Yll and le, respectively, p =

P[X11 > Cl,)(21 > CZJ’ and [Yll,

bivariate series with common density function given by

lej a sequence of

G(x,y) = 0, if x £ 0 and/or y s 0
and (2-139)

G(x,y) = Ejﬁﬁfl:a , if x>0, y>0.

Llamas (1968) gives an approximation for the case
where the truncation level in both components is the
‘median and the underlying distribution is standard
normal. The degree of approximation was not deter-
mined.

The case of serially independent but mutually
dependent components, as discussed by Heiny (1969), is
similar to the univariate case with the only modifica-
tion for the run-sum to take into account the differ-
ent run-sums of components.

All above studies, however, consider only the
cases of both runs being either negative or positive,
with no attempt to study the positive-negative or
negative-positive runs. The complexity in analytical
developments were likely the major reason for the lack
of studies in literature related to the serially and
mutually dependent bivariate case of run-sums. There-
fore, they will be investigated by the experimental
method, similarly as it was done for the largest run-
sum in a sample of the given size.
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Chapter 1l
EXPERIMENTAL APPROACH FOR STUDYING DROUGHT CHARACTERISTICS
OF STATIONARY STOCHASTIC PROCESSES

The data generation or experimental Monte Carlo
method derives, in an approxifiate way, the drought
frequencies as the estimates of drought probabilities
of large return periods by generating a given number
of samples of data of given sizes.

The analytical method derives the probability of
any drought parameter by generalizing the properties
of the available time series. When the mathematics
involved become very complex, the analytical method
may help in setting up the data generation approach
and in the interpretation of its results. The data
generation method requires univariate, bivariate, or
multivariate generations of samples, in the latter two
cases also for the case of mutually and serially de-
pendent components. The dependence used here is in
the form of the first-order linear autoregressive mod-
el for all dependent components of the bivariate or
multivariate case, with the serial correlation coef-
ficients differing from one component to another.

3-1 A Multivariate Generation Model

Hydrologic variables, such as streamflow at
different stations in a region, are both spatially and
serially correlated since they are affected by similar
climatic and hydrologic factors. The drought in a
region depends highly on the level of water demand be-
sides depending on the available water.

Demand levels are not necessarily the same
throughout a region. Furthermore, since historical
records are short and consequently less reliable it is
necessary to study droughts of long return periods on
simulated records at each station by preserving both
the time structure and the interstation correlation of
historical series. This requires the use of multi-
variate data generation approach.

The parameters that are unbiased and have the
lowest sampling variation are ones to be best pre-
served in the data generation method. Saldarriaga and
Yevjevich (1970) show that the run-length properties
of stationary processes are independent of their means
and the standard deviations while being dependent on
the probability q of the truncation level, the
series dependence structure and the skewness of dis-
tribution. On the contrary, the run-sum properties
depend on all above properties and in particular they
are directly proportional to standard dewviation of the
process. Once the run-sum of the standardized vari-
able is known, the run-sum for any other o 1is ob-
tained by multiplying the run-sum of the standardized
variable by this o. As a consequence, the generation
of long samples of two series will be made each with
the mean of zero, standard deviation of one, two trun-
cation levels q and 4y» given sample size n, and

the first-order autoregressive time dependence models
for their serial correlation coefficients pl[ex) and

pl[ey} and their lag-zero cross correlation coeffi-
cient p(ex,ey). The generated samples are then used

for the analysis of probabilities of runs covering the
cases most likely to occur in practice. In the bi-
variate case considered, the two streamflow station
series, generally cross correlated, are used,

Multivariate time series analysis has been
studied for some time, Quenouille (1957). .However,
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its use in hydrology for the purpose of generating new
series may have been initiated by Fiering (1963), who

treated both the bivariate and the multivariate model.
The bivariate model was

Y-y X, . -X
i+1 7 i+l 2 .k
‘—;;—— * Py i, + (- px,y} u, o, (3-1)

with x and ; the meaus, Sy and sy the standard

deviations, p

% the lag-zero cross correlation coef-
ficient, and ™’

yl“y

me v, [1-11)35 ’ (3-2)

s
Y

in which =«
tween u.
» 1

is the cross correlation coefficient be-
and Yir expressed in function of the first

serial correlation coefficient pl(x} of X and the

first serial correlation coefficient pl(y) of Y,
with =n given by

2
pyly) - e (x) 0
s i DL il O 2 (3-3)

2
X,¥Y
with Vi a random normal deviate with zero mean and

unit variance. The means, variances, the respective
serial correlation coefficients, and the lag-zero
cross correlation coefficient between the two vari-
ables are preserved approximately through this model.

Matalas (1967) gives a lag-one multivariate
Markov model which preserves the means, variances, the
respective first serial correlation coefficients and
the lag-zero cross correlation coefficients, and if
desired, the lag-one cross correlation coefficients.
The presented model is based on a multivariate weakly
stationary generating process, defined by

Ko S0 K

X, (3-4)

+ B Ein

with §i+1’ Ei and §i+1 being (m x 1) matrices, the

independent random components £

and independent of components Xi

mutually independent
and A and B the

(m x m) matrices whose elements are defined in such a
way as to preserve the desired statistics. In this
case A is a diagonal matrix. Young and Pisano
(1967) in a comment on paper by Matalas, and later on
in a more detailed presentation (Young and Pisano,
1968), give an alternative method of solving the B
matrix by means of an orthogonalization or a recursive
scheme, making it a simpler solution. Pegram and
James (1973) present an extension of this model to the
multi-lag case, specifically to the lag-two case, in
order to preserve the means, the variances, the re-
spective lag-one and lag-two serial correlation coef-
ficients. The Young and Pisano model preserves only
the first two moments. It means that residuals should
be normally distributed, or transformed to become
normally distributed (McGinnis and Sammons, 1970). If
it is not feasible to use such a transformation for
any reason, a model is required for preserving the
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third-order moments, such as the one given by Moreau
(1970), which preserves the skewness coefficients.

Let consider an ensemble of the trend-free

streamflow samples from a region as the xi series,
i E]

with i the station number (i = 1,2,...,m) and j

the time sequence (j = 1,2,...,n). The streamflow

time series can be considered as composed of a deter-
ministic component (periodicity in parameters) and a
dependent stochastic component, or

he.g =iy 2

(3-5)
Periodicities in the mean and standard deviation are
removed by

(3-6)

The linear models for the stationary time series are
studied by using correlograms or spectra. For monthly
runoff, with the periodicity in parameters removed, it
has been found that a first- or a second-order linear
autoregressive model often fit well the time series
dependence of the stochastic component (Roesner and
Yevjevich, 1967). For annual time series used in this
study, the first-order linear autoregressive model was
often used (Yevjevich, 1964) as a good approximation
to time dependence. Therefore, the first-order model
as a first, basic approximation is exclusively used in
this study. To simplify the analysis, stochastic com-

ponents are standardized. The €5 i variable is con-
»

sidered normally distributed with the mean zero and
variance unity. In case €5 3 is not normally dis-

3

tributed, transformations such as logarithmic, square
Toot, cubic Toot, or others are made to approach a
normal distribution as closely as feasible. The
multivariate case of the model is then

“Ag +B

S 7 R g e

Bje1
with j the time, A and B the (m x m) diagonal
matrices, Eﬁ an (m x 1) matrix of independent compo-

nents following the standard normal distribution, and

E(e) = 0; E(E) = 0; Var(e) =1; Var (£) = 1. (3-8)

Calling M_ the lag-zero covariance matrix of €.,
then L E.

T = -
E(‘_r--;_j Ej) =M (3-9)
and MI the lag-one covariance matrix, or
B, ol = (3-10)
=445 Ty

Taking the expectation of Eq. 3-7, the check is made
whether the means are preserved. Multiplying the same
equation by EE and taking the expected values then

Bl T T
B(gg,) &) = A Elg; £5) + BECE &) (3-11)
By replacing
“ & -1 o
Ml = A Mo » 0T A= Hl Mo - (3-12)
0 o T 4 T
and multiplying Eq. 3-7 by €341 replacing Ej+l of
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the right hand side by its value of Eq. 3-7, and
finally taking the expected value, then

M =AM Al
[s] w—

T o o
+ B (&, &up) B (3-13)

If £ are considered to be mutually independent
components as well as serially uncorrelated, then
E(§j+1 §§+1) = I, the identity matrix, which means

that the m x m matrix has each diagonal element
equal to unity and all off-diagonal elements equal to
zero, so that

T _ -1, T
BB = Mo Ml M0 Ml § (3-14)
Equations 3-12 and 3-14 define the coefficients of
matrices A and B. Equation 3-14 is straightforward
to solve. For the bivariate case used in this study

with components X and Y,

-pl(Ex] p+1(Ex’Ey}

P lene) ey le)

8, 0 1 p(sx,ey)
- (3-15)
f 25, p[sx,sy] 1 :
50 that
pile) = a;, p_l(ex,ey} = Dl(ex}n{sx,ayJ.

(3-16)
nl(syj = a,,, and p+1[£x.ey3 = pl(eyl p(ex,sy],

in which pl(zx) and DI{EyJ are the first serial

correlation coefficients of the €x and e series,

and p(ex,eyJ and p+l{£x’ey) are the lag-zero and

lag-one cross correlation coefficients between the
£, and ey series, respectively.
The term §-£j+l consists of independent

stochastic components of the model, which are indepen-
dent of e and e but are mutually dependent. Re-
placing §-§j+1 by 2§+1, with Ej+1
trix, it becomes an independent stochastic component.

Multiplying Ei*l by 3§+1 and taking the expecta-

tion, the covariance matrix C of the stochastic
serially independent component is obtained. Since
this is a symmetric matrix, one solution is a lower
triangular matrix, so that the solution for B can
be obtained either by orthogonalization or recursive
scheme technique, or by principal components tech-
nique. Then

a (mx 1) ma-

T y=BECE,.. & B ,

E(v. Sia1 Ey) B

i1 Yja1 @=17)

. T . _ .
with E(§j+1 £j+1) I. Since £ are mutually inde-
pendent components,

.

o . av y = B (3-18)

—~j+1 %‘.1) N RE

For the bivariate case, replacing B and g? by its

matrices, Eq. 3-18 gives



b, o |]ey, P21
P21 Pf[0 Yy
Var[ul j+1) c°“(“1,j+1' v2,j+1)
= ’ (3-19)
Cov{u1 j+1° 2,j+1) Var{uz,j+1)

which when solved, becomes

P 0o
B = .

PO, svz/l-pzto)

(3-20)

To obtain the relation between the cross correlation
coefficient p(Ex'Ey) the stochastic dependent compo-

nents and the cross correlation coefficients p(0),
between the stochastic independent components, the
corresponding values are replaced in Eq. 3-14, or

B pf{ax] ple e )1 - py(edey (el
[o(e,,e,) (10, ()0, ()] 1 - p2(e,)
x'y 1V x' P17y Loy
= 2
Svl p{O)SVIsz
< : (3-21)
2
_p[G}SVIsz sz
with

S =v 1 - pf(sx] , S =41~ Df{sy} 2

b

5 = a(sx.syJ[l - nltex)pl(sy]} ’
/1ol /1 - oleey)

(3-22)

@7 1 - o337 1 - okiey)
ple.e,) = 3 L, (3-23)

Y
1 -pltﬂx]pl{ey)
and
* 2
1-p,(e) 0
B=

p(0)/ 1 - pile)

/’1 - pf{ex) Vfl - oi(sy)
(3-24)

The advantage of making use of correlation between the
serially independent stochastic components is the
statistical inference about the correlation coeffi-
cient.

The parameters are now .p(0), pj{sx), and pj(ey).

with the model preserving the means, the variances,
the lag-zero cross correlation, and the respective
serial correlation coefficients of normal variables.
The lag-one cross correlation coefficient if insignif-
icant, as commonly found, need not be preserved.
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Another advantage of the model presented is that in
cases of no serial dependence, say for annual precipi-
tation series, pj(ex] and pj(zy} become zeros, with

the model reduced to a simple form.

3-2 Investigated Drought Characteristics

The drought properties investigated in the case
of stationary time series are of two kinds, runs sta-
tistics related to a given sample size, and runs of
infinite series. The statistics of interest for runs
of samples of a given size in this study are the
longest run-length and the largest run-sum. The dis-
tribution of these random variables vary with the

truncation levels C1 and CZ' the sample size, and

the parameters of the underlying process as described
in Section 3-1, of which p (s Y Py (e ), and p(0)

1
are the most significant.

Runs of interest for infinite series are the
run-length, the run-sum and the run-intensity. These
random variables vary with the truncation levels Cl

and CZ’ and the parameters of the underlying process,
particularly gl(ExJ, pl(syJ and p(0).

For the bivariate case, the run-sum is defined as
the sum of the partial run-sums, whether positive or

negative. For the negative-negative run-sum it is
k k
8. % _; (€, - X)) + _[ (€, - Yy (3-25)
i=1 i=1

Similar definitions hold for the negative-positive
{Snp), positive-negative (San and positive-positive

(Spp] TUn-Sums.

For infinite series, a joint distribution of
run-length and run-sum may be obtained, and from it
the properties of the run-sum may be derived. Chang-

ing parameters to consider are five: Cl’ CZ’ pI(ExJ’

plfsy], and p(0), for standardized normal variables.

Several combinations are selected for the use in gen-

eration method. For their selected numbers ny

through Mg » respectively, the total number of cases
to be investigated is mlm2m3m4m5, which will be con-
sidered in computing the total number of samples to be
generated.

The truncation level of each series can be better
expressed in the form of quantiles q, with q =
P(XsC). Three values are selected for each of the two
series in the bivariate case: ;. = 0.50, 0.35, 0.20,

The se-

lected values of serial correlation coefficients are:
plfsx) = 0.0, 0.2, 0.4, and pl(ey) = 0.0, 0.2, 0.4.

The lag-zero cross correlation coefficients between
the serially independent stochastic components are
selected as: p(0) = 0.3, 0.5, 0.7. The total number
of combinations for all three correlation coefficients
is fifteen with twelve combinations resulting from
p(o) = 0.3, 0.5, 0.7; pl(:x) = 0.2, 0.4, and pl(ay} =

0.2, 0.4, plus three combinations.resulting from
p(0) = 0.3, 0.5, 0.7; pl(ex) = 0 and plfey) = 0. The

and q, = 0.50, 0.35, 0.20, respectively.

sample sizes selected are n = 25, 50, and 200. The
value of 200 was chosen in order to consider an ex-
treme of large historical samples presently available.

e et A g et O e e
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No consideration was given to eventual varying
the skewness coefficient of the Ei components. This

would increase the total number of cases and samples.
The study by Millan and Yevjevich (1970) showed that
the distribution of the longest run-length was only
slightly affected by the skewness coefficient of uni-
variate asymmetrical dependent stochastic components,
while the distribution of the largest run-sum is much
more affected by the skewness coefficient. In total,
135 combinations of five parameters are selected for
the study by the experimental (data generation) method,
for deriving the distributions of runs for an infinite
series, and 405 combinations for the distributions of
runs for the selected sample sizes.

The selection of the number of samples to be
generated was studied by Millan and Yevjevich (1970)
for the longest run-length, considering the distribu-
tion of the sample mean run, L which was said to be

asymptotically normal based on the central limit theo-
rem. In this study, the number N of samples of a

given size n, to be generated in such a way that the
probability is at least 0,95 for the estimate m, to

be within the tolerance limits Fy + U.ZGT, is com-

puted to be 200. A total size of generated numbers
is then Nn = 40,000. For the case of runs of a given
sample size n the number of bivariate samples is

then m = 40,000/n, or

n 25 50 200

N 1600 800 200
Once Nn random numbers are generated for n = 200,

all numbers are used for the smaller values of n in
order to allow an increase in the accuracy of esti-
mating distributions of runs.

3-3 Algorithms Used for Computing Relative Frequency
Distributions of Runs

The procedure followed in the experimental method
is divided in three parts: (1) generation of bivari-
ate samples; (2) determination of frequency distribu-
tions of selected runs for the bivariate case and
infinite series; and (3) determination of frequency
distributions of selected runs for the bivariate case
and given sample sizes. The distribution of runs of
both kinds are obtained for all the combinations of
selected parameters: Cl’ Cz, pl(axJ, pltey], p(0),

and n.
For generating the bivariate samples the model
presented in Section 3-1 is used, represented by
Eq. 3-7, expressed as

-
1,541 7 PalEdey y Loy (e) &

= 0)(e)e, 5+ 2(0) i pf(ey)

+ /Fl - pi(sx] {/1 - pi(sy} 52’j+1 s

£2,j+1 £1,j+1  (3-26)
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with pl(sx], pltsy}. and p(0) as defined earlier,

and & and 52,j+1 the two independent series

sj+l
of random numbers. The series of standard normal
random numbers are generated directly, namely by
transforming the uniform numbers into the normal ran-
dom numbers given in Box and Muller (1958), whose
equations for a pair of standard normal random numbers

51 and 52 are
£, = (-2 1In A };i cos 2mA
1 1 2"
and (3-27)
E, = (-2 In A )}5 sin 2wA
2 1 2 2
where 11 and Az are two consecutive independent

random numbers which are uniformly distributed in the
interval (0,1).

The 80,000 random numbers required were
generated by means of Eq. 3-27 and used in Eq. 3-26
Jfor each of the 15 combinations of pl{ex), pl(ay], and

p(0). They wére stored on magnetic tape. A tape of
250,000 standard normal random numbers was used for
the purpose. To obtain the distribution for selected
runs of infinite series, a computer flow chart was
prepared, Fig. 3-1. To obtain the distribution for
selected runs for the given sample sizes, a computer
flow charge was also prepared, Fig. 3-2.

Select parameters chtx]. pl{zyl, p(0),

c

1 and Cy, and obtain truncated series.

1

Compute joint frequencies of the negative run-length
and negative run-sum ror univariate cases.

Compute joint frequencies of the negative-negative
run-length, and the corresponding negative run-sum in
one series and the corresponding negative Tun-sum in
the other series.

Compute joint frequencies of the negative-positive
run-length, and the corresponding negative run-sum in one
series and the corresponding positive run-sum in the other
series.

Compute joint frequencies of the negative intensity
I, in one series and the negative intemsity I, in the

other series.

Compute joint frequencies of the negstive intensity
T, in one series and the positive intensity I, in the

|

[Store all joint frequencies on tape.

other series.

Fig. 3-1 Flow Chart of the Algorithm for the Analysis

of Runs of Infinite Populations.



Split the large generated bivariate sample in m samples,

each of the given size n .

: 1

Compute the first serial correlation coefficient of each
series and the lag-zero cross correlation coefficient for

each sample.
1

Transform each series for selected truncation levels to

series of 0 and 1 values.

Compute the frequencies of 0 and 1 for each series from

the total sample.

Compute for each series transition frequencies for the
total generated sample of 0 and 1 values.

{

Compute transition frequencies for the bivariate Markov
chains of 0 and 1 series, which series correspond to
the generated autoregressive modéls of the total sample

size,
!

Compute frequencies of run-lengths of each kind (NN and
NP) for each of m bivariate samples and determine
and store the longest run-length of each kind for each

of m samples of size n .

Compute the run-sums of each kind, for each bivariate
sample with the definition of run-sum for the negative-

negative case, S = 51+Sz, and for the negative-positive

case, S = $1+S,; determine and store the largest run-

sum of each kind for each sample of size n , and

1

Determine frequency distributions of the longest run-
length and the largest run-sum for NN and NP kinds of
runs, for m samples analyzed.

Fig. 3-2 Flow Chart of the Algorithm for the Analysis
of Runs for Given Sample Sizes.
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Chapter IV
ANALYSIS OF RESULTS OBTAINED BY THE EXPERIMENTAL METHOD

Frequency distributions-of various runs, for both
infinite series and samples of given sizes, obtained
by the experimental method in generating a very large
sample for drought variables of given characteristics,
are fitted by the selected probability distribution
functions.

The results can be presented in two ways:
(a) as graphs and/or tables of frequencies distribu-
tions, and (b) as estimated parameters of fitted prob-
ability distribution functions. The latter approach
has the advantage of condensing the information, be-
cause two to four parameters are sufficient to define
the probability distribution functions. Furthermore,
the estimated parameters of probability distributions
of runs can be expressed in terms of parameters of
underlying time series and their truncation levels.
Because of these two particular advantages, the second
approach is used only.

Since distributions of run-lengths are discrete,

discrete probability functions are fitted to frequency-

distributions of run-lengths, while continuous prob-
ability distribution functions are fitted to frequency
distributions of run-sums.

4-1 Fitting Discrete Probability Distribution
Functions to Frequency Distributions of

Run-Lengths

Ord (1972) and Johnson and Kotz (1969a) present a
detailed analysis of discrete distributions, with sys-
tems of discrete distributions defined by difference
equations. This is analogous to the Pearson system of
continuous distribution functions, defined by differ-
ential equations. The discrete system is based on the
fact that for the hypergeometric distribution the
ratio of the probability functions
(Pj*l'Pj)K(pj+1+Pj) is of the form: Ilinear function

of j
(1967).

divided by quadratic function of j, Ord
The difference equation is

; i (a-r}Pr_l
P b _+b r+52r(r-1i’

r-1 o 1

(4-1)

and the criterion is defined by
(b, -b,-1)°
WS 4b2i50«a§'

(4-2)

The alternative form of Eq. 4-1 is

[a—r}Pr

Fr-l [a+b°}*(b1-1)r4b2ftr—1}'

A (4-3)

with values of parameters expressed in terms of the
first four moments, as given in Table 4-1, with

2
DP - 2(582'681'9)1 DG - 4UB3+3U2(U*H '3“230
\

2
u o
s 3 4
il Al S o
M3 H2
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For distributions with lower boundary at the origin,
the index of dispersion 1 is defined by Ord as
I = u,/u; another similar index is S = uslu. The

system of distributions presented by Ord uses the
criterion of Eq. 4.2 for selecting distributions.
Another method of distinguishing amongst distributions
over the range (O,N) and (0,») is the (I,S)-plane,
as shown in Fig. 4-1.

Table 4-1 Expressions for the Parameters of the
Difference Eq. 4-1.
Parameter Pearson Discrete with Range (0,N)
a -{u3/u2)(82+3]Dp (1-2b2)u+1-bl
: by u2(432-351)/0p 0 .
b, -a {1y-b, (Buyru™ =) }u
2
b, (252-381-6]/Dp {u (ug*u,) ~2u5 10
S

Negaotive Binomial

1y cisson
-
4
5Hyper—
L geomeinic Beta Binomial
(Right of the Line of Binomial and
Negative Binomial)
o] -7

Binomia

TTTTETS S SN o oYY

Fig. 4-1 (I-S) - Diagram for Selecting Discrete
Probability Distribution Functions for
Fitting Discrete Frequency Distributions of

Run-Lengths.

If none of the above discrete probability
distribution functions fits well a frequency distri-
bution, measured by the chi-square statistic, it is
possible to use the list of discrete distributions
given by Patil, Joshi and Rao (1968) for selecting
the other discrete probability distributions
functions.

Other alternatives are: the polynomial expansion
transformation (say, the Charlier Type-B series), or.
the use of mixtures of distributions. The chi-square
test of goodness of fit is used in testing all fits by
various probability distribution functions.



4-2 Distributions of Run-Length of Infinite Series

The case of distributions of run-length of
infinite series for univariates were studied, and
checked by the experimental mgthod, by Downer,
Siddiqqi and Yevjevich (1967) for the independent
case, and by Saldarriaga and Yevjevich (1970) for the
dependent case. The case of the bivariate independent
case was studied by Llamas (1969) and Heiny (1968),
with no experimental procedure used for the check.

The bivariate case for mutually and serially correlat-
ed components is of the main concern in this paper.
This section presents the general forms of run-length
frequency distributions, with the fitted discrete
probability distribution functions, and the regression
relations of estimated parameters of fitted probabil-
ity distributions to the parameters of the two compo-
nent series.

To assess how good are the results obtained by
the experimental method, the cases of the fit of known
exact probability distribution functions to computed
frequency distributions of runs are used, also., This
gives the level of confidence in the method applied,
even for cases for which either the exact or approxi-
mate analytical results cannot be obtained. Since the
exact probability distributions of run-lengths are
known for simple cases of underlying processes, say
for the bivariate case of serially independent but
mutually dependent components, the comparison of
results of the experimental method with the exact dis-
tribution gives measures of the deviates of fitted
probability distributions from exact probability
distributions.

Exact distributions of negative-negative and
negative-positive run-lengths are given in
Section 2-6. A selected case is presented in Fig. 4-2
for comparison of probabilities of negative-negative
and negative-positive run-lengths of the bivariate
case: serially independent but mutually dependent
components, with p(0) = 0.7 and truncation levels
¢, = 0.0000 and C2 =-0,38535. The experimental

frequency distributions are obtained by using the
algorithms given in Section 3-3, Probability distri-
butions, selected by criteria given in Section 4-1 for
discrete distributions, are both negative binomial
with the two parameters, p and r. The parameters
are estimated by the method of moments. The exact
distributions are obtained by using the function given
in Section 2-6, with joint bivariate normal probabili-
ties obtained from the normal distribution table,
Visual inspection shows that the above three methods
of computing or estimating probabilities of run-
lengths are essentially identical for practical pur-
poses. The chi-square test of goodness of fit, ap-
plied to compare the fitted probability distribution
function to frequency distribution, gives the chi-
square value of 2.59 for the case of negative-negative
run-length and the value of 5.71 for the case of nega-
tive-positive run-length. Both are smaller than the
critical value for two degrees of freedom at the

95 percent probability level of significance.

Since the fitting of this probability
distribution is acceptable, the same function is
fitted in all 135 cases of combinations of five param-
eters. All the cases are analyzed in using the Ord's
approach, namely by finding whether the negative
binomial distribution is acceptable,

T+x-1, T

£, = (TR AR, (4-4)
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Fig. 4-2 Comparison of Experimental Frequencies,
Fitted Negative Binomial Distribution to the
Experimental Frequencies, and the Exact Dis-
tribution for Negative-Negative and Nega-
tive-Positive Run-Lengths for the Bivariate
Process of Serially Independent but Mutually
Dependent Series with p(0) = 0.7 and
Truncation Levels C, = 0.0000 and

C2 = -0.38535. 1

with p = xfsz and T = xp/(l-p). With parameters
estimated, probabilities of equal class intervals of
chi-square statistics, as expected frequencies, are
then computed.

The chi-squares are transformed into the
corresponding probabilities by using the chi-square
cumulative distribution functioh

2

2
F0d) = 1/21 i } (B2 -2) 12k 2 (-89
2 F[Eu} 0

with v stands the number of degrees of freedom and

xz, the upper integral limit, the computed chi-square.
Probabilities of chi-squares instead of chi-squares

themselves are used as comparable measures of goodness
of fit of probability functions to observed frequency

distributions. Values of F[P(xz}] for P(xz) = 95
greater than 50 percent were considered acceptable as
approximation to the distribution desired. Probabili-
ties of observed chi-squares are classified into ten
equal class intervals in this and subsequent sections
of the paper, the class frequencies of results of
experimental method are determined, and the cumulative
relative class frequencies computed. Results for the
negative-negative and the negative-positive run-length
distributions are given in Figs. 4-3 and 4-4, For the
95 percent level, 82.5 percent and 90.2 percent of
computed chi-squares for the negative-negative and the
negative-positive run-length distributions, respec-
tively, were smaller than the critical chi-squares.

It is concluded that the negative binomial distribu-
tion is adequate and an acceptable approximation of
distributions of negative-negative and negative-
positive run-lengths for the serially and mutually
dependent components of a normal bivariate process,
for the range of parameters and truncation levels
investigated.

Instead of presenting the two estimated
parameters p and x of the fitted negative binomial



distribution in tables, the multiple regression
analysis is used to express these estimates in terms
of parameters of the underlying bivariate process and
truncation levels.
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4-3 Cumulative Distribution Curve F[P(xz)] of
Probabilities of Chi-Squares of the Nega-

Fig.

tive-Negative Run-Length, P{xz].
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Fig. 4-4 Cumulative Distribution Curve F[P(x")] of
Probabilities of Chi-Squares of the Nega-

tive-Positive Run-Length, P(x").

The approach used in this analysis is to express the
estimated parameters as two functions

P = £)[C1.C,u0 (e 00, (5 ),0(0],  (4-6)

and

= fz[Cl,Cz.pl(ex),nltey),n(OJJ- (4-7)

Stepwise multiple linear regression analyses were
performed, based on Eqs. 4-6 and 4-7. The independent
variables in these regression equations are the
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selective parameters: Cl,Cz,plfsx),pl(sy}, and p(0).

The dependent variables are the two parameters of the
negative binomial distribution, symbolized here by u,
expressed in the linear form, as the first
alternative:

u=a+hb plfax) + cpl(cy] +dp(0) +e C1 ¥ £ Cz.
(4-8)
Table 4-2 gives the estimated regression coefficients,
as a condensation of information on estimated proba-
bility distributions of negative-negative and nega-
tive-positive run-lengths, for the range of parameters

studied. The two parameters in the negative binomial
Table 4-2 Estimated Regression Coefficients of
Eq. 4-8 for the Negative-Negative and
Negative-Positive Run-Lengths.
u a b R - d e £ R:
Tan || - 79046 | -.21027 |=.21798 | -.21702 | -.16930 | -.13896 [ .9244
%, | .3306a | .3s9sa | .3e3a3| 52733 | .32736 | .31954 | .8127
Pap || -70729 |-.30926 |-.05499 | 23828 [..20907 | .16244 [ .9451
;np .40699 | 40253 | .03957 | -.3330C | .38%65 |-,30129 || .9157
distribution of Eq. 4-4 are p and r. However, the

explained variances by the multiple regressions ob- _
tained for the parameter r were smaller than for x.

Similarly, the stepwise multiple linear
regression analysis, based on Eqs. 4-6 and 4-7, to
determine whether the use of probabilities of quan-
tiles 4 and q, as independent variables, and

corresponding to the two truncation levels C, and

1

C2 together with olfex), pltey), and p(0) would

: . : 2 :
give a larger explained variance R” than in the case

of using €, and C2. The dependent variables were
again p and Xx, expressed in the form

u=a+b ol(sx] - colfey} +dop(0) +e q, * f ay-

(4-9)

Table 4-3 gives the estimated regression coefficients.
Since the results are similar to those obtained using
the truncation levels, only the quantiles will be used
in the remaining parts of this paper. It should be
stressed that the multiple nonlinear regression analy-
sis was also investigated, resulting in the lower

values of R2 than obtained for the selected multiple
linear regression.

Table 4-3 Estimated Regression Coefficients of
Eq. 4-9 for the Negative-Negative and
Negative-Positive Run-Lengths.

u a b i d e f R
Pan 1.21820) -.21027 | -.21798 | -.21702 | -.47400 | -. 36791 L9191
;"m -.57004 38954 36343 32733 91963 .B9756 L2194

i L77257 | -.30926 | -.05499 23828 | -.5&807 L45602 . 9459

n

X L2B646 .40253 08357 | -. 35300 | 1.08919 | -.584341 L9168

np




4-3 Distributions of Longest Run-Length in Samples
of Given Sizes .

The case of the longest run-length in the sample
of size n for the independent univariate process has
been studied at length in the past. The univariate
dependent process was investigated experimentally by
Millan and Yevjevich (1971) and by Millan (1972). The
probability distribution functions of the longest ne-
gative run-length in n observations, obtained by the
experimental method, were fitted by a lognormal dis-
tribution function even though it was recognized that
this statistic is a discrete random variable (only
positive integers are random events). Distributions
of the longest run-length of a given type in samples
of a bivariate process have not been yet studied. Its
analytical treatment either in an exact or in an ap-
proximate way, as stated in Chapter II, consists of
four combinations of serial and mutual dependence of
the two components. This section gives the general
forms of frequency distributions of the negative-
negative and negative-positive longest run-length in
samples of size n, fitted but the approximate proba-
bility distributions, and the multiple regression
equations of estimated parameters of fitted distribu-
tion functions in terms of parameters of assumed un-
derlying bivariate processes.

Similarly as for the case of run-lengths for
infinite series, the results of the experimental
method were checked by using the case of the known
probability distribution function of the longest run-
length. The case used in the bivariate process of
serially independent but mutually correlated series,
with the exact results given in Section 2-3 for both
the longest negative-negative and the longest nega-
tive-positive run-lengths in samples of size n,

p(0) = 0.7, pl(sx] = plfey) = 0.0, and C1 = C2 = 0.0,

The frequency distributions are obtained by using the

algorithm given in Section 3-3. Figure 4-5 gives the

comparison of the experimental frequencies, probabili-
ties of fitted function (mixture of geometric distri-

butions), and exact probabilities.

The fit of discrete probability distributions is
more complex for the negative-negative and negative-
positive longest run-lengths in case of samples than
in case of infinite series, The analysis by using the
family of discrete distributions, as given by Ord,
inferred that the function should be of the Beta-
Pascal type. When its parameters were estimated by
the method of moments, square roots of negative num-
bers were obtained, making the fit impossible. The
reason for this was that the values of S and I
were near the boundary with the hypergeometic distri-
bution., The fit of hypergeometric distribution [Patil
and Joshi (1968)], produced similar results. The
attempt to use the series expansion approach of the
Charlier Type B series, as given by Kendall (1943),
gave similar results as the binomial distribution
which were tried initially, with the chi-squares much
greater than the critical chi-squares. The fit of
discrete distributions of the Hyper-Poisson family,
given by Bardwell and Crow (1964), gave similar re-
sults as the use of Charlier Type B series with no
reduction in probability of chi-squares. The method
of moments estimation of parameters was used for all
the above distributions. A continuous distribution
was also used with the understanding that it would be
only an approximation to discrete distributions, and
that probability densities multiplied by the unit-time
interval around the integer values would represent the
probability mass at the integer value. Also, this
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q =9, = 0.0.

approach failed to pass the chi-square test. A
mixture of discrete distributions was then used.

A visual inspection of experimentally obtained
frequency distributions suggested the use of a mix-
ture of two geometric distributions: left side with a
truncated geometric distribution and right side with a
standard geometric distribution. The discrete distri-
bution of this mixture is suggested to the writer by
D. Boes in 1973, as

Y=X
(1-91) Bl

£y (x) = o ey T R, §
"%y
8.(1-8.)%
» (1-0) =t (4-10)
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with 8, and 62 parameters of each part,

respectively, y a location parameter and o a parti-
tion parameter. The estimation of these parameters is
made by the maximum likelihood method. The location
Y is estimated either by the mode ¥ = m or by
3

¥ =m-1, a« 1is estimated by & = Z pi, 82 by

i=1
= = - -
x - %) with x the mean of observations greater
than § + 1, and 61 by an iterative solution of

ey aY
O T ke
1-8, 8, 1801 e

1 1 1
with Ei the mean of observations less than <.

Exact distributions of Fig. 4-5 for the
negative-negative and negative-positive longest run-
length, respectively, were obtained by using the dis-
tribution given in Section 2-3, with joint probabil-
ities of the bivariate obtained from tables of normal
distribution and Eq. 2-15,

Visual inspection of Fig. 4-5 shows the three
compared distributions to be close for practical pur-
poses. The chi-square test of the goodness of fit of
selected mixed distribution function to fit the exper-
imental frequency distribution was used. For a sample
size of 25, the chi-square was 6.34 for the longest
negative-negative run-length, and 0.24 for the longest
negative-positive run-length, both being smaller than
the corresponding critical chi-squares of 7.815 and
3.841, respectively, for three and one degrees of
freedom at the 95 percent significance level.

Similarly as for the case of run-length of
infinite series, the estimated parameters of fitted
probability distributions are related to parameters of
the underlying bivariate processes, instead of pre-
senting the graphs of experimental frequency distribu-
tions. For the 405 different combinations of basic
parameters the samples were generated, the frequency
distributions obtained and the mixture probability
distribution functions fitted.

The parameter vy was estimated either by the
mode m, as § =m, or by ¢ = m-1, whichever gave the
smallest chi-square value. The other parameters were
estimated as described previously, and probabilities
as the expected frequencies are computed for the chi-
square test.

Similarly as for distributions of run-length of
an infinite series, the computed chi-square values
were transformed to their corresponding probabilities
by using the chi-square cumulative distribution func-
tion of Eq. 4-5. Probabilities of observed chi-
squares are classified into ten equal class intervals,
the corresponding observed class frequencies deter-
mined and the cumulative relative class frequencies
computed. Results of probabilities of chi-square for
distributions of the negative-negative and negative-
positive longest run-length are shown in Figs. 4-6 and
4-7. At the 95 percent level, 68,3 percent and
50.2 percent of the computed chi-squares for the
longest negative-negative and negative-positive run
length were smaller than the critical values. The
fitted distributions are accepted as adequate approxi-
mations for the experimentally derived frequency dis-
tributions of the negative-negative and negative-
positive longest run-length in n years for a normal
bivariate process, in the range of parameters and
truncations investigated.

Following the method of previous analyses for
runs of infinite series, parameters of the fitted
probability distribution functions for the longest
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run-length of given sample sizes are related by the
multiple linear regression to parameters of underlying
normal bivariate process, the truncation levels and
sample size, expressing the estimated parameters in
the form of Eqs. 4-6 and 4-7.

Stepwise multiple linear regression analyses were
used, with independent variables being 9 and Qs

the quantile probabilities for truncation levels,
p(0), the lag-zero cross correlation coefficient be-
tween the serially independent stochastic components,
and the serial correlation coefficients altﬁxJ =

pl(zy] = 0.0. Dependent variables were the estimated

parameters of fitted distribution functions, symbol-
ized by u, in the form

u = a+bp1[exj+Cpl(sy]+dp[U)+eq1+fq2+g log . (4-12)
Tables 4-4 and 4-5 give the estimated regression .
coefficients. The form of Eq. 4-12 was obtained after
different trials with the multiple nonlinear
regressions.



Table 4-4 Estimated Regression Coefficients of
Eq. 4-12 for the Negative-Negative Longest
Run-Length in a Sample of Size n.

u a b & d - e 2 B R

y |-4-05751 | .67364| .61192| .98148 | 2.96296|2.83951 |1.75236 | .8233

afvy .69B35 |-.07551|~,08227 [-.12509 | -,31244|-.31332|-.11409f .79C6

e, 1.2847]1 1-.23525)~,22875 |-.21905 .52795|-.47152 |-, 02546 ff 9036

ﬂlp"r +08726 | .04108| .04209 |-.01139 | -.00463|-.01392(-,02972] .2169

Table 4-5 Estimated Regression Coefficients of
Eq. 4-12 for the Negative-Positive Longest
Run-Length in a Sample of Size n.

¥ ||--74931 . 18513 67601 |-1.11111 |-2.08642| 3. 72840 1.42368Y. B042|

afyll .50198 |-.02325 |-.0B476| .13836| ,34381|-.54054|-.14312.7985

ﬂ, .32634 | -,08529 [..27450| ,20982| .56094|-.74094|~.03070§. 9318

811’1’ .10510 .00701 | .05416) ,00925| -,01177|-.04440]-.03424 §.1596

4-4 Fitting Continuous Probability Distribution
Functions to Frequency Distributions of Run-Sums
and Run-Intensities

Run sums and run-intensities are continuous
random variables, so that continuous distribution
functions must be fitted to their experimental fre-
quency distributions. In fitting probability func-
tions to experimental curves, two approaches are used
in this study: (1) Pearson family of distribution
functions (Pearson, 1895), and (2) probability func-
tions transformed by polynomials. The Pearson family
of functions has been discussed by many authors, nota-
bly by Elderton (1953), Elderton and Johnson (1969),
Kendall and Stuart (1969), Johnson and Kotz (1969b),
etc., with detailed analyses available.

The series expansion approach assumes that an
arbitrary density function, h(x), can be represented
by a series based on a known density function, say
the normal density function, in the form

h(x) = £(x) [

CjHj(x} , (4-13)
j=0

with Hj(xJ polynomials of the order j in x, and
Cj the coefficients which depend on the type of poly-

nomial in Eq. 4-13. This approach is used for the
joint distribution of run-sums of infinite series.

4-5 Distributions of Run-Sums and Run-Intensities of
Infinite Series

Distributions of run-sums of infinite series of
independent univariate normal processes were studied
analytically by Downer, Siddiqqi and Yevjevich (1967)
and the results checked experimentally. This case
was also studied by Llamas (1968) for the independent
gamma variables. Distributions of run-sums of uni-
variate dependent processes are obtained by Heiny
(1970) in an approximate form. The bivariate process,
with components mutually and serially independent, was

analyzed by Llamas (1968) and Llamas and Siddiqqi
(1969) only for the negative-negative run-sum. The
serially independent but mutually dependent components
of the bivariate process were analyzed by Llamas
(1968) and Heiny (1970) only for the negative-negative
Tun-sum. .,

In this paper, the runs of bivariate normal
processes of mutually and serially dependent compo-
nents are investigated. Because the analytical treat-
ment is complex, experimental method is used to obtain
frequency distributions for selected cases. Experi-
mental results are checked by using the properties of
run-length, as explained in Section 4-3. Joint fre-
quencies of the corresponding run-lengths and run-sums
of series 1 and 2 are obtained for the negative-nega-
tive and negative-positive cases. Distributions of
the joint frequencies of run-sums and run-intensities,
obtained experimentally, were fitted by gamma func-
tions with Laguerre polynomials.

Distribution functions of gamma type with
Laguerre polynomials are used for the negative-nega-
tive and negative-positive run-sums. The reason is
that the bivariate normal distribution was not giving
an adequate fit, and the fits of the bivariate gamma
distributions, given by Ord and Mardia (1970), were
not acceptable. Marginal distributions fitted by the
Pearson Type III probability function did not pass the
chi-square test of goodness of fit; however, the ob-
tained chi-square values were close to critical val-
ues. After these attempts, the two-parameter gamma
distribution function was used for the marginal dis-
tributions and the product of two gamma functions with
Laguerre polynomials for joint distributions. This
approximation to joint probability density function
with series expansion is

fy y(y)
(Bl-l) (32-1]
= £, (£, (y) ; g 3 L (Ax) L (A,y), (4-14)
(8,) (8,)
with Lj (klx) and I..k (lzy) the Laguerre poly-

nomials of degrees j and Kk, respectively. A
Laguerre polynomial of degree m, Léc (z), is ex-

pressed by expansion in power series of z as

(c) _mom m-1
by (@ =2 -3 (m+c) z

¥ Eigfli-(m+c]{m+:-1)zm-2-... r (4-15)
For ¢ > -1, the polynomials Lécj(z), |5 S W R

form an orthogonal system on the semi-axis (0,=), with
the weight function fl{z},

@ (c)
b

(z)Léc)[z} £(z) dz = 0, if j #m, (4-16)

d?, 1€ § s (4-17)

For

£(z) = z°¢"%, then

B di = miT(c+m+l) . (4-18)
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Coefficients a.. can be estimated by taking the

jk
(ﬁl-I) [32—1]
expected value of L, (llx} Ly (Azy], namely
as ]
(8,71 (8,-1)

= w (g,-1) (g,-1)
= Ly (X)L (p¥) £0x,y)dxdy . (4-19)

00

Replacing fX Y[x,y} by its value in Eq. 4-17, and

considering that the postulated marginal distributions
are

B.-1
e'llx(Alx] 1 A
£,(x) = Tep) ’ (4-20)
and
ALY B,-1
£, (y) : 2 {RZYJ : 32 (4-21)
Ly = $ e
2 r(8,)
then Eq. 4-19 becomes
(BI_]) [52-1)
E[Lj (g x) Ly 0,1
=k, x g,~1
= (81 =1) e ' (A, x) %
=7 Va, [t it 1 1
: ik j 17 m {hx) dx
ik 0 1 T(BlJ
“A,y B,-1
= (B,-1) (8,-1) e (A7) Ay 5
‘ é Ly (AL (1) (8, y
(4-22)

Taking into account Eqs. 4-16 and 4-17, the expected
value is

(8,-1) (8,-1) ajy

1 2 j 2 2

E[Ly (%) Ly BT, 4 >
(4-23)

(a,,l=

or

(8,-1)

T(8,) I'(R,) (8,-1)
LA 27 pii S O L 2

4k = Z i
k

(A,¥)]. (4-24)
¢t d 2
Coefficients ajk are obtained for the selected

values of j and k in Egq. 4-24. Using values up to
j = k=3, and simplifying Eq. 4-24, then

399 = 1 a1 = 8y T a5 =85 =0,
A A
CMA , . E(X) i
El11 = -BTE'Z'EEXY}-I, with }\1 = Var (0 ° 31 J\IE(X];
O EM i E
Y T vargy ¢ B2 T MEM

31
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21 ° 78+ 8, .8, )
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1 B 1 3 .3 1
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03 = €5, (5,71) (5,2) 2 78, (8,7 2 3
o ] $-% 1 By L
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(4-25)

Nine parameters of probability distributions to fit
the joint frequency distributions of run-sums and run-
intensities are E(X), E(Y), E(X2), E(Y2), E(XY),

EX%Y), EQXY?), E(X), E(Y).

Nine parameters of joint distributions of
negative-negative and negative-positive run-sums were
computed for the 405 cases of experimentally gener-
ated large samples. They gave the expected frequen-
cies for the chi-square tests of goodness of fit of
these functions. Computed chi-square values are
transformed into their corresponding probabilities by
using Eq. 4-5. They are classified into ten equal
class intervals with their class frequencies deter-
mined and the cumulative frequencies computed., Re-
sults for the negative-negative and negative-posi-
tive joint distributions of run-sums are presented in
Figs. 4-8 and 4-9, At the 95 percent level, 71.5 and
72.3 percent of computed chi-squares were smaller than
the critical values. The fits of gamma functions with
Laguerre polynomials are accepted as satisfactory
approximations.

Stepwise multiple linear regression analyses were
made to express the estimated parameters of the joint
probability distribution functions, as dependent wvari-
ables, in terms of exact parameters of the two series
and the corresponding truncation levels, of the type
of Eq. 4-8. Independent variables were the same as in
Section 4-2., Tables 4-6 and 4-7 give the estimated
regression coefficients, which represent a condensa-
tion of information on sampling distributions of the
joint negative-negative and negative-positive run-
sums, respectively. In these tables, Dy and D,

are the deficit in series 1 and 2, respectively, and

82 is the surplus in series 2. Also the RZ values

are given.

For the case of joint distributions of
run-intensities the same approach is used as for joint
distributions of run-sums. Figures 4-8 and 4-9 show
the cumulative relative class frequencies of probabil-
ities of obtained chi-squares. At the 95 percent lev-
el, 77.3 and 79.4 percent of the computed chi-squares
were smaller than the critical chi-squares. The fits
of gamma functions with Laguerre polynomials are ac-
cepted as satisfactory approximations. Stepwise mul-
tiple linear regression analyses were performed to
obtain equations of the type of Eq. 4-8. Independent
variables are the same as in Section 4-2, with depen-
dent variables being the estimated parameters of these
joint probability distribution functions. Tables 4-8
and 4-9 give the estimated regression coefficients and
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the RZ values. A comparison of results of the
regression analysis of parameters of the distribution
of the joint negative-negative and negative-positive
run-sums presented in Tables 4-6 and 4-7 with the re-
sults of the regression analysis of parameters of the
distribution of the negative-negative and negative-
positive run-intensities presented in Tables 4-8 and

4-9 shows the higher values of R2 for the intensi-
ties than for the sums. This can be explained by the
fact that the existing correlation between the run-
length and its corresponding run-sum produces a small
sampling variation in their ratios.

4-6 Distributions of Largest Run-Sum in Samples of
Given Sizes

The case of distributions of run-sums for given
sample sizes, particularly the largest run-sum in n

32

Table 4-6 Estimated Regression Coefficients of
Equation 4-9 for the Joint Distribution of

the Negative-Negative Run-Sum.

Par a b c d e f 32
E{DI} - 0.13828| .29217| .:32565| .47747| 2.27276 .24!31.9541 g
E[‘Di) =~ 3.45871| 2.24692| 1.50811 | 2.08177| 9.39387 2.13814'.88_11
E(Uz} - 0.14848| .33977| .28768| .49921| ,26572 2.23571.9560
EED%} - 3.66554 | 1.58701| 2.23931 | 2.30118} 2.36588 9.52111!.3&34
E(Blﬂz) - 3.55407| 1.65397| 1.60771 | 2.21951| 5.31621 | 5.23639 .8519
E(Dsz} -21.47830 |10.48223 | 8.00554 [10,93330|30. 38095 |22.21412] . 7396
E(Dng) ~21.91244 | 8.44968 110.19924 [11.33341 |23.26341 |50.01339) . 7389
E[Df) -25,77062 |11.43511 F.S_STNZ 7.52094 |46,67559 |14.87846] . 7796
E(D;} -25.46707 {12.59252 | 8.21255 F.S‘SZSSI 16.93461 |47.35485§ . 7781

*Table 4-7 Estimated Regression Coefficients of
Equation 4-9 for the Joint Distribution of
the Negative-Positive Run-Sum.

Parameter| a ] c d e £ R
E(Dl) .B0961L L21366 | .06127(- .75001| 1.51613|- .79645).9428
E(D;“] 1.35259 1.16286 .154911-2.28541| 4.57479]- 2.66B04).8313
E(Sz} 1.66053 .29840 | .06292(-1.15574| 1.30632|- 1.92101].5387|
E(S.z.} 3.98495 | 1.51274 | .47539)-4.02596) 5.12212|- 6.83044§.8130

E(Dlszl 1.78577 | 1.14991 | .22798|-2.39263| 5.98309|- 3.60603).7970

'E(st-) 4.18571 | 5.20360 | .61882|-7,70235[13.57333|-11.73363§.6358

'EEDIS;‘:) 6.24975 | 5.71521 |1.27931(-9.64958 |15.92044 |-16.02572].6313
E(D':) 3.77980 [-B.66343 [6.19092| .52688 |17.05712|-10.96483].6804
E[SE) 13,83225 |-17.25806|8.25806 | 3.02852 {24.16221 |-30.385253 §.6642

years, was studied by Millan and Yevjevich (1970) for
the univariate processes by the experimental method.
The analytical treatment in simple form seems not
feasible. Distribution functions of the largest run-
sum of the independent and serially dependent uni-
variate normal processes, as obtained by Millan and
Yevjevich, are fitted by the lognormal distribution
function with the use of the Smirnov-Kolmogorov good-
ness-of-fit test.

Distributions of the largest run-sum of a given
type for given sample sizes of an independent bivar-
iate normal process have not been studied either ana-
lytically or experimentally, because they are much
more complex cases than the cases of the univariate
normal process. The bivariate normal dependent pro-
cesses have not been studied either. This section
shows only the general form of sampling distributions
of the largest negative-negative run-sum and the
largest negative-positive run-sum in samples of size
n. The fitted probability distributions are obtained
as gross approximations, and the multiple linear re- .
gressions are given between the estimated parameters
for the bivariate case and the parameters of the
underlying processes, similarly as it was done in pre-
vious sections.

Since no analytical exact distributions of the
largest run-sum is available for checking purposes,



Table 4-8 Estimated Regression Coefficients of

Equation 4-9 for the Joint Distribution of
the Negative-Negative Run-Intensities.

Parametay [ b c d L} f Rz
E(:l} L47401 (01053 1 10113 | 15554 (- .36984] 1.01882§,9527
E(I:} .3B111 =-.02097 | -.19865 .24595 |- .75182| 1,83578[.9370
E[Iz) 46436 | -.00520 | 00287 | .15288 | 1.01316|- ,36285{.9547
E(:i) L3BA7B | -.1940Z | -.03291 | .21526 | 1.79156(- .73459f.9368
5“1123 .10585 | -.05072 | -.10057 | .35195 .52130 .52115).9609
E{lilz} =.02215 | -.15602 | -.20465 | .547%4 30227 1.18212.9653
E(Illi) -.01154 -,18210 | -.17135 L52624 1.16466 L30407|. 96351
E{If] .42313 .37252 | -.0B6313 |~-.355852 [-1.36124; 3.06647|.9219
E(Igl 45223 (20816 |-.34514 |-.10170 | 2.96276]-1.32683|.9210

Table 4-9 Estimated Regression Coefficients of
Equation 4-9 for the Joint Distribution of
the Negative-Positive Run-Intensities.

T

Parameter! a b c d e £ F.z
E(!lj 1.19141 - .02739]-.02169 |- .63241| .34307 |- .91721{.9731
E(l‘i] L.61523 | - .0B231(-.03C27 |-1.00012| .49313 |-1.552741.9574
E(Izj .57319 - .06822 00614 |- .37257| .60713 |- .1B8795).9650

2

E(IE} L5211 = J12128] ssveas - (55067 .83410 (- .215B3(.9611
E(Ilrz) .68442 | - ,05133|-.00514 |- .57154| .53718 |- .56824|.9712
E(Iilzj .84367 | - ,079911-.00784 |- .79648( .58710 |- .85141].9428
E(ILI§] .55261 - .07996|-.01116 |- .€1613| .62530 (- .48747{.9516
E(Ii) g.42237 -1.80594 |-.17756 |- .03915| .70077 |-2.45258.9389
E(ii) 60376 | - .79708)-.20022 |- .01025|1.14461 |- .25024[(.9492

the results must rely on the check with the longest
run-length of the same series.

The Pearson family of distribution functions was

used, with the available criteria
type of the best fit to frequency
tained by the experimental method.
these functions were estimated by the method of mo-
ments, as a characteristic of the Pearson approach,
The chi-square test of goodness-of-fit was used with
the 95 percent significance level. Tables 4-10 and
4-11 show the number of cases fitted by Pearson Type
VI, I, and IV distribution functions. The total num-
ber of simulated cases is 405.

for identifying its
distributions ob-
The parameters of

Table 4-10 Pearson Type VI, I and IV Probability
Distribution Functions Fitted to the
Experimental Frequency Distributions of
Negative-Negative Largest Run-Sums.

Sample
Function_ Size 25 50 200 Total
type n
VI &80 45 29 154
I 50 88 103 241
IV 5 2 k! 10
405
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Table 4-11 Number of Cases Fitted by Pearson Type VI,
I, and IV Probability Distribution Func-
tions Fitted to the Empirical Frequency

Distributions of Negative-Positive Largest

Run-Sums .
Sample
Function Size 25 50 200 Total
type n

VI 1 23 59 83

I # 2 39 41

IV 134 110 37 281

405

To have the same distribution for different
sample sizes, Type IV was chosen for the negative-
positive largest run-sum, by having 281 cases of good
fit out of 405 cases, or 69.38 percent. Similarly,
Type 1 was chosen for the negative-negative largest
run-sum, by having 241 cases of good fit out of 405
cases or 59.50 percent.

The Pearson Type IV distribution function, with
the origin at the mean, is

o T 2
_— yo{l " {g . ¥i2}-%(r+2}e-utan a T . (4-26)

These

estimated by the method of moments.

Bl and 32 are defined by the sec-

fourth moments about the mean, as

with Yor &8s V and r the parameters.

parameters were
The parameters

ond, third and

By 5. dnd By=— (4-27)
43 H2

and estimated by the corresponding sample moments.
The distribution parameters are then

. 6{82-51-1}
b - = »
2B,=38, 6
r(r—ZJV’éT
N2 3 3
A6 (r-1)-8, (r-2)° #-28)
M
L 2 a2
and a --\‘ﬁ- /16 (r-1) Bl(r 2)
The My and v have the opposite signs. The
parameter y = can be obtained by using the function

H(r,v), by integrating the values y/)fO and weighting

the density function accordingly. The integration was
performed numerically using the Simpson rule, ob-
taining the area under the curve y/y , and from it
the corresponding weighting factor. 2

Results of probabilities of chi-square obtained
for the distribution of the negative-positive largest
run-sum are presented in Fig. 4-10. At the 95 percent
level, only 39.1 percent of the computed chi-squares
were smaller than the critical chi-squares. Pearson
Type IV distribution function was found to be closest
approximation to the frequency distributions of the
negative-positive largest run-sum in samples of n



years for serially and mutually dependent components
of a bivariate normal: process.

Estimated parameters of the Pearson Type IV
distribution function are related by the multiple re-
gression equation to parameters of the bivariate pro-
cess and the two truncation levels. Stepwise multiple
regression analysis was used in ‘the form of Eq. 4-12.
Independent variables were same as in Section 4-3.
Dependent variables were the estimated parameters T,
v, a, and Yo Table 4-12 gives the estimated regres-

sion coefficients.

Multiple regression analysis was performed also
for Bl and 82 parameters as dependent variables,

with the same independent variables as above, by using
Eq. 4-12. Table 4-13 gives the obtained regression
coefficients. The multiple correlation coefficients
are very low in this case.

Table 4-12 Estimated Regression Coefficients of
Eq. 4-12 for Parameters of Pearson Type IV
Distribution Function Fitted to Frequency
Distributions of the Negative-Positive
Largest Run-Sum in n Years.

Param-} 1
ater [ b e d ] £ [ L3
a 2.60315 | - 05298 .22058 |-1.10793 |- .61857 | 1.014Z7 |- .63704 §.725C

vlu 2,70117 L1650 | = (TASE3 | 7.00844 | 330643 [-7.05050 | 317734 ff. 7860

T 4.70243 |-2.52155 | -1.25306 |-4.75224 |-4.45602 |11.27875 | 1.85436 §.5048

¥ 1.06718 18227 |- 35452 80765 | 1.02957 |-1.938L5 |- .3B512 f§.548

Table 4-13 Estimated Regression Coefficients of
Eq. 4-12 for Parameters Bl' and 82 of

Frequency Distribution of the Negative-
Positive Largest Run-Sum,

eter . b € d € £ & R

B =2.73505 | .10755 ] 7005 | 40378 §-1.09867 | Z.47199 |1.67406 §.3155

g,y = 51374 | 1.8408% | 1.98578 |5.94192 | }.38068 | -2.25997 |2.39163 §.3d63
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Fig. 4-10 Cumulative Distribution Curve F[P(x )] of
Probabilities P(x2) of Chi-Squares of the
Largest Negative-Positive Run-Sum in Using
the Pearson Type IV Function.
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Figures 4-11 and 4-12 show comparisons of
experimental cumulative frequency distributions of the
largest negative-positive run-sum in the samples of
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F1g 4-11 Comparison of the Cumulative Frequency
Distribution of Negative-Positive Largest
Run-Sum in a Sample of 50 Years with a
Fitted Cumulative Pearson Type IV Distribu-
tion Function, with Parameters a = 1,4354,
v = 2.5801, r = 5.8329, and Y™ 4.3655.
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Fig. 4-12 Comparison of the Cumulative Frequency
Distribution of Negative-Positive Largest
Run-Sum in a Sample of 25 Years with a
Fitted Cumulative Pearson Type IV Distribu-
tion Function, with a = 0.6505, v=0.4248,
= 3.5160 and Y = 1.2110,

50 and 25 years, with the fitted cumulative Pearson
Type IV distribution functions. For the case of a
bivariate process, serially and mutually dependent,
with pl(ex) =P (s ) = 0.4, p(0) = 0.5, ql = 0.50,

q, = 0.35, and n = 50 years, the computed chi-square
is 3.24 with three degrees of freedom, which is
smaller than the critical value of 7.815. For the

case of a bivariate process, serially and mutually de-
pendent, with pl(st = plfe ) = 0.4, p(0) =

0.35; q, = 0.20, and n = 25 years, the computed chi-

square is 159, which is the largest obtained. It can
be observed that even for large values of chi-square,
the fit looks good, at least for the upper extreme
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which is of interest in most applications. It should
be stressed that Fig. 4-12 corresponds to the case of
the Pearson Type IV distribution adjusted to the dis-
tribution of the largest negative-positive run-sum,
which gave the smallest value of F(P(xzj] for

P(xz} = (.95 among the other drought parameters stud-
ied. The case presented in Fig. 4-12 is the one with
largest computed chi-square (159). The other cases
will have much better fits.

The Pearson Type I distribution function, with
origin at the mean, is

X m1 Xin ik
y=y, Q+3 -4, (4-29)
1 2
with
mlfl ) m3+1
Al .\:

Parameters Al, - mz,

method of moments. Similarly, the parameters §

and m, are cstimated by the

1 and
g, are defined by the population moments and esti-

mated by the second, third, and fourth sample moments

about the mean. Then the distribution parameters are
estimated by
Bt 6(32-31-1\ Fath
- 6+3bl-252 !
fy
m = L{(r-2)+T(r+2) 3 o, (4-31)
Bl(rvl) +l6(r+1)
1 s 9% 1 -
m, = L{(r+2)-r(r+l) % } (4-32)
v ﬁl(r+2]“+16[r+1] !
y 5 P m,+1
ﬂl = Ef;;\;igl(r+2]-#16(r*l)} ﬁ;;ﬁ::i s [4=33)
el
A, = W, ViE (142) 426 (x4 1) - A, (4-34)

with the probability density function at the origin
ny m, _

1 (m1+lj (m,+1} ufml+m2+2i )
fip = o [4=3
‘e A, iy i T(m +1)T (ny+1) (4-33)

(m1+n,+2| - “
When Ve is positive, m, is the positive root. The

results of probabilitics of chi-square fur distribu-
tions of the negative-negative larpuest run-sum are
given in Fig. 4-15. At the 95 percent level, 58.3
percent of the computed chi-squares are smaller than
the eritical chi-square values. The Pearson Type |
distribution wus found to be the closest approximation
to froguency Jdistributions of the negative-neguative
largest run=sum in n  years of serially and mutually
dependent components of a normal bivariate process.

Estimated parameters of this Pearson Type I
function are related by a stepwise multiple linear
regression, of the type of Eq. 4-12, to the same inde-
pendent variubles as in Section 4-3. Dependent
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Fig. 4-13 Cumulative Distribution Curve F[P(XZJ] of
Probabilitics P(xz} of Chi-Squares of the
Largest Negative-Negative Run-Sum in Using
the Pearson Type 1 Function.

variables were Al, loglu AZ’ O and 1og10 m,. Table

4-14 gives the estimated regression coefficients.

Table 4-14 Estimated Regression Cocefficients of
Eq. 4-12 for Parameters of Pearson Type I
Distribution Function Fitted to Frequency
Distributions of the Negative-Negative
Largest Run-Sum in Samples of Size n.
Params 2
wter a -] & d *® 4 '3 R’
A, [l-+.7006s [2.5e351] 2. 48282 ] 1.17257 [6. 74525 5. 05850 [1. 02279 1. 8590
1o, b, | 237500 | .32988[ 13936) -.1925¢[1.43400| .02059 |- 67084 (1. 4756
N 92808 |-, 53516]-. 73346 [-1,30600 1. 76558 |- 02879 | | 26227). 3609
log, o 3.1872€|-.16256|-.302¢6 | -.6701.]1.10093|-.04335 |- . 80328 . 4023

Multiple lincar
&, and

@
1 .

regression cquations of parameters
are also obtained for the same indepen-

dent variables, with regression coetficients of the
type of Eq. 4-12 given in Table 4-15.

Table 4-15 Estimated Repression Coefficients of

Eq. d-12 for Pavamcters 8, and 8, of
Fregueney Distribution of the Negative-
Nepotive Lurgest Run=Sum in Samples of

Sime N
Param- 2
eter a b I € d e £ t R
] 3.85483|.37074 |, 17916, 19429|-,.28429 |-1.04728]-1.22607|.7397
= i
8a FQ.:JGI& L40104 |, 12781 e L12728|-1.82012]-2.19183.712:

Figure 4-14 shows a comparison of the
experimentally obtained frequency distribution of the
negative-negative largest run-sum in samples 50 years
long, with the fitted cumulative Pearson Type [ dis-
tribution function, for the bivariate process with
serially and mutually dependent components, and with
pltex] = 0.4, pltayl = 0.2, p(0) = 0.5. ql 2 02, q, =

0.35, and n = 50. The computed chi-sqbare is 6.72
with five degrees of freedom, which is smaller than
the critical chi-square of 11.07. Figure 4-15 shows
a similar comparison in case the largest computed



chi-square is 431.0, for the bivariate process, with
serially and mutually dependent components, and

& (cx}

n =25,

= py(e,) = 0.4, 0(0) = 0.7, q) = q, = 0.2, and
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Fig. 4-14 Comparison of the Cumulative Frequency

Distribution of the Negative-Negative
Largest Run-Sum in a Sample of 50, and the
Fitted Cumulative Pearson Type I Distribu-
tion Function, with Parameters A, =

1
2.64655, kz = 21.28228, m, = 0.48980, and
m, = 10.9802.
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Distribution of the Negative-Negative
Largest Run-Sum in a Sample of 25, and the
Fitted Cumulative Pearson Type I Distribu-
tion Function, with Parameters Al =
2.0510, A, = 43.5548, m, = 0.0329, and

m, = 20.9340.
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Chapter V
DROUGHT ANALYSIS OF PERIODIC-STOCHASTIC PROCESSES

5-1 Statement of the Problem

The drought analysis of periodic-stochastic
processes is more complex than the drought analysis of
stationary stochastic processes. The use of the the-
ory of runs for periodic-stochastic processes may no
longer be the best approach unless some decomposition
of series is performed for these processes. However,
any such transformation may affect the objectives and
results of the analysis.

Monthly series will exemplify the
periodic-stochastic processes in the following analy-
sis. Series with a shorter time interval than a month
may also serve the same purpose. A review of present-
ly available techniques, and of some potential tech-
niques for drought analysis of these processes, are
presented in this chapter only. A case study is given
in which the drought parameters used are specific
drought magnitude criteria.

5-2 A Review of Presently Available Techniques

Drought analysis depends whether the water flow
is regulated or not. The instantaneous extremes are
used in case of no regulation, while deficits during
the critical periods are used when flow regulation is
involved.

In the theory of extremes, droughts are defined
as instantaneous or interval smallest annual values,
with every year giving one lowest value or the drought
(Gumbel, 1963). The problem was to find probabilities
of these lowest values, called the minimum drought
values, either positive or zero. Using the symbol X
for random variables defining droughts, the return
period T(X), as the expected number of years between
the exceedences of a deficit, is

(5-1)

1 1
TR = PX<x] ~ F(O "

Since the exact distribution of drought variables as
defined is not available, the asymptotic, bounded
exponential distribution of the smallest value of a
positive variable was used by Gumbel. This approach
to droughts of periodic-stochastic processes may be
well used in pollution control problems, attaching
probabilities to levels of critical concentrations of
pollutants. Similarly, probabilities of minimum con-
secutive n-days values, with n often 7, 15 and 30
days (Gannon, 1963), are determined. This particular
definition of drought as a couple-cf-days lowest
values in a year may be acceptable for perennial but
not for intermittent streams.

For studying droughts in case of flow
regulations, Askew et al. (1969) defined the critical
period as the time duration during which the hydrolog-
ic record would give the most critical deficit with
respect to demand. The maximum permissible water
extraction rate is used as a variable of this critical
period. This permissible rate is based on the active
storage available in a hypothetical system of reser-
voirs. The demand can be smaller, equal or greater
than the maximum permissible extraction rate., Gener-
ally, the extraction is assumed to be constant during
the critical period. Whenever the rate of demand is
greater than the maximum permissible extraction rate,
the deficit may be conceived as a drought.

Another parameter used for definition of droughts
in case of flow regulation is the firm yield criterion
(Beard, 1963). The number of shortage periods per
year, and the amount of annual firm yield, are defined
as drought parameters. Firm yield should be well de-
fined for a reservoir system, with the characteristics
of this system specified how it produces the firm
yield in terms of monthly and total annual use of
water. A single index of the economic effect of
shortages was suggested by Beard (1963}, in form of
the sum of squares of annual shortages in a 100-year
period, beginning with an initial or representative
amount of water in all storage capacities. The yield
needed to be met by the system is the total water re-
quirements of all water users and all losses.

Beard and Kubik (1972), in studying the operation
rules of a reservoir system, stated that many theoret-
ical studies of potential yield are based on providing
a uniform yield throughout the year, whereas virtually
all water uses vary seasonally. As a consequence of
it, and in order to consider a more realistic situa-
tion, they suggested a detailed sequential analysis of
the process of runoff storage use, both for making a
reliable estimate of required storage and for deriving
operation rules of the system.

The water supply in form of runoff time series
have been studied extensively. Their description by
mathematical models of periodic-stochastic nature of
monthly, weekly or daily series has been extensively
investigated. The water use time series have not been
studied in such details as the water supply time
series, Salas and Yevjevich (1972), in studying the
actual water demand or water use time series, conclud-
ed that the demand series are basically trend-period-
ic-stochastic series are to be considered. A need
exists for a development of methodology of estimating
these parameters and producing the realistic realiza-
tions of future samples of water use time series. The
lack of these sequences is a likely reason for con-
sidering only trend and periodic components in water
demand time series. Only the periodic water demand
series are used in this paper.

5-3 Potential Techniques for Drought Analysis of
Periodic-Stochastic Processes

One alternative in treating the drought of
trend-periodic-stochastic series is to remove trends
and periodicities in parameters, using either the
parametric or nonparametric method of their removal.
The procedure in this approach is relatively simple,
namely it is assumed that water demand series have
both trends and periodicities in basic parameters,
with these periodicities being in phase with periocdic-
ities in parameters of water supply series. An addi-
tional simplification is that they all have the same
amplitudes, Llamas and Siddiqui (1969) used this
approach for the analysis of a univariate monthly
precipitation periodic-stochastic series. The non-
parametric method of removing periodicities in param-
eters was used, and the theory of runs was applied in
the drought analysis in case of a dependent stationary
time series, It can be shown that the stochastic com-
ponent of monthly precipitation could be approximated
by an independent series for all practical purposes.
This fact simplifies the study of droughts for the
stochastic component of monthly precipitation in a
univariate case. For the bivariate case and removed



periodicities in parameters, in this approach the
exact expressions for distributions of different runs
can be used, as shown in Chapter II. However, the
run-sums may not have a clear meaning if the general
but different standard deviations of the two series
are not retained while removing periodicities. Run-
lengths can be investigated on the standardized sto-
chastic components without too many problems. For de-
pendent second-order stationary univariate or
bivariate series either the exact or approximate ex-
pressions of the theory of runs, as presented in
Chapter II, will produce the properties of droughts.
The analysis of droughts for trend-periodic-stochas-
tic processes, by removing trends and periodicities in
parameters, depends on the characteristics of demand
series.

Another alternative is to use the
supply-less-demand series. Since the supply series is
periodic-stochastic and the demand series is assumed
to be only periodic, in phase with and of the same
amplitude as the periodicity in supply series, dif-
ferences between supply and demand represent a first-
order stationary process of deficits and excesses. In
case of high variability between the low and high
flows, the excess-deficit series still can be period-
ic, in which case the theory of runs of stationary
processes may not be meaningfully applied. This ap-
proach has the disadvantage of not being adequate when
periodicities in demand are out of phase with and of
different amplitude than the periodicity in supply.

The third alternative, used in this paper, is
the "drought-magnitude and drought-duration criteria."
The magnitude of a drought depends on the demand im-
posed on the water system, During the planning stage
of a water resource development scheme, for example,
the choice of droughts for analysis is related to
contemplated demand series. As shown by Texas Water
Development Board (1971), the severity of the most
critical drought affects the selection of the ultimate
plan, by influencing decisions on the size and the
number of facilities required for optimal performance
of a system. The more severe this most critical
drought, the larger or more numerous are facilities
that are needed to insure an adequate performance of
the entire system. Of great interest in the planning
process are droughts which require new storage capac-
ity to insure uninterrupted deliveries, or which re-
quire importation of water from other sources.

When severity of a drought is studied, special
considerations must be given to relations between the
drought duration and all the physical storage and
other capacities of the system, which are required to
meet the demand during the drought period. A drought
of a given duration, equal to or longer than the time
required to use the storage system from a full to an
empty state, will have quite a different effect on the
system than a short drought not requiring more than
the total water storage.

The magnitude of a drought can be defined as the
maximum absolute value of monthly differences between
supply and demand over the drought duration. In
mathematical terms, this magnitude is

ket X, -D,
M, = min [min ) 1t 1, (5-2)
t k i=k+l

with X, the monthly supply (in the case of a system

of reservoirs, it is the sum of the monthly inflows to
all the reservoirs), Di the monthly demand (in case

of complex systems, it is the sum of monthly demands
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at all system demand points), k any starting time
point for studying droughts, and t the duration of
the critical drought period in samples used for analy-
sis. This concept is analogous to studying the nega-
tive run-intensity for univariates or the joint nega-
tive-negative run-intensity for bivariates.

Another parameter, proposed by the Texas Water
Development Board (1971), is the drought time posi-
tion, defined by the time of the drought mid-point.
For a drought with duration t and the absolute
starting time k, the position is

(5-3)

There may be individual months during drought
periods when supply exceeds demand. However, effects
of these months may not be sufficiently large to over-
come the general drought consequences, since all the
other months would have significant deficits. Be-
cause some sort of flow regulation may always be in-
volved, the storage easily takes care of individual
months with small surplus and distributes it over the
“months of significant deficit. If no regulation is
involved, the surplus of these couple of months is
simply lost.

This alternative for drought measuring parameters
has the basic disadvantage that the theory of rumns
cannot be easily applied, since the periodicities are
involved. It is a somewhat different approach to
drought definition. The main advantage over the other
approaches to drought definitions is that it can
easily treat the cases of demand being out of phase
and of different amplitude in comparison with those of
water supply.

A fourth alternative is based on a simultaneous
generation of annual and monthly series, by jointly
preserving their parameters such as the mean, vari-
ance, serial correlation coefficients, among the
others. Harms and Campbell (1967) used this type of
generation, claiming to preserve the normal distribu-
tion of annual flows, the lognormal distribution of
monthly flows, and the serial correlation of annual
and monthly flows. The technique is based on the
assumption that a first-order linear autoregressive
model is adequate to represent the dependence of an-
nual flow series, and that the Thomas-Fiering model
is adequate to represent the structure of monthly flow
series, with an adjustment being sufficient to take
care of the linkage between the annual and monthly
flow series. Their expressions are

Q.,,-Q Q.-Q'
I e r et 0D, (5-4)
and
logdy,; ;-19894,) i ks, PRT
51 T 1 tA-r )
i+l i
(5-5)
with the adjustment
a ; - Eff.ﬂi;isi_ (5-6)
1259, 3

where a, is the number of days in the j-th month,

q 3 and Qj are the generated monthly and annual
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flows, respectively, qi and Qi are the historical

2]

monthly and annual flows respectively, Ri and T,

i
are the first serial correlation coefficients of an-
nual and monthly series, respectively. Another tech-
nique available for this type of generation is the
disaggregation process, outlined by Valencia and
Schaake (1973). For the cases considered in this pa-
per, namely the first-order linear autoregressive
model for both the annual and monthly series, the
technique which considers a sequential generation of
annual events with a disaggregation model for generat-
ing seasonal, monthly, weekly, or daily events within
the year, can be adjusted and uséd. Due to computer
storage requirements, these authors suggest first to
generate seasonal values and then to repeat the pro-
cess on a season by season basis to generate monthly
values in a second disaggregation step.

For this fourth alternative of simultaneous
generation of annual and monthly time series, once
samples are generated, the theoretical analysis or
approximations in case of dependent processes can be
applied to annual series to determine the probabili-
ties of drought runs. For example, if the annual pro-
cess is inferred to be stationary process having the
first serial correlation coefficient Py then the

probabilities of a long drought or probabilities of
the longest run-length, say for a project of economic
life of 50 years, can be determined. For simultaneous
generation, a k-year or the longest drought in annual
series may be singled out, and the monthly series of
this period can be investigated. The annual series
permit the identification of critical drought periods
to design the system, with the sequential patterns of
monthly series studied for these periods. The main
advantage of this alternative is the use of a more
reliable estimation procedure for probabilities of
droughts rather than obtaining these probabilities
from less reliable frequencies of historical records.

Further advantage of the fourth approach relates
to the use of optimization techniques in design and
operation of water resources systems, because, after
the critical droughts of given probabilities are de-
termined, the optimization procedures can be applied
to parts of monthly series during these critical
periods instead of optimization extended throughout
the total generated monthly series.

The approach of drought magnitude and drought
duration criteria, as outlined herein, has the poten-
tial to be developed in a technique of drought analy-
sis of periodic-stochastic processes. To demonstrate
this potential, a case study has been worked out and
presented in the next section.

5-4 A Case Study

The drought analysis of periodic-stochastic
processes is complex not only due to periodicities,
but also because the number of parameters for both the
supply and demand series is much greater than in the
case of stationary stochastic processes. The large
number of parameters requires a large number of cases
to be studied in the general form, and this number can
be excessive. As a consequence, no attempt is made
here to generalize all cases or to cover some or most
of them in this paper. A case study is given only in
order to show the use of drought parameters, as
presented in Section 5-3 and therefore, the case study
covers a small number of parameters. In spite of
simplifications it is thought that the case has a
practical significance.
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The monthly supply series is assumed to be a
periodic-stochastic process, with periodic mean and
periodic standard deviation composed only of the 12-
month harmonic. The resulting stationary stochastic
component follows the first-order linear autoregres-
sive model, as given by

X, = %) (1) cos[%—r+ﬁl(u]]

+ {§;+C1(a) cos[%—1+el(u}]] (plsi_1+£i}, (5-7)

with Xx the overall mean (2.885), Cltu) the ampli-

tude of the 12-month harmonic in the mean (1.889),
eltuJ the phase of the first harmonic in the means

(0), E; the overall mean standard deviation (1.848),
CIfU] the amplitude of the first harmonic in the
standard deviation (0.946), el{c} the phase of the
first harmonic in the standard deviation (0), and Py

the first serial correlation coefficient (0.5). The
independent stochastic component £i is assumed to

follow the three-parameter lognormal distribution
(n(x-8) - u)?
n

1
£f(x) = exp{- ¥,
(x-B)sn/§§ ZSE

(5-8)

with the lower bound 8 =-1.5, L 0.2216, and

2
s, = 0.3677.

The monthly demand series is assumed to be a
periodic process, with periodicity composed only of
a 12-month harmonic. This is a simplification in
comparison to reality. Nevertheless, it is a common
practice in water resources planning to simplify the
complex nature, because quite often the lack of data

may not justify the more complex models. The demand
model then is
I * 18 * 5-9
Di =D + C1 cos(s T+ el), (5-9)

with D the overall mean (2.50), c3 the amplitude of
the first harmonic (1.00), and B; the phase angle

of the first harmonic (0). For supply and demand
series in phase, Sl{u] = BI; otherwise they are dif-
ferent. In this case study three alternatives are
used for phase differences [elfu] - a{] = 0,0, w/2

and 7.

Since the monthly demand has been shown by Salas
and Yevjevich (1971) to be periodic-stochastic
processes, the demand could have been modeled as

=D * sl *
Di D+ Cl(u) Cos[6 T 4+ Blfu]]

+€63)  (5-10)

*
15i-1

with parameters D, CI(u), BI[u], Eh, CI(U), Bi(u],

+ {8 + C¥(0) cns[%-T + 831} (o

pI, and the independent stochastic component of de-
mand series E; as the counterpart of that of the

supply series. Since results are expected to be sim-
ilar to those when only the periodic demand is



considered, as far as computing the drought
characteristics, the case study treats only the peri-
odic demand.

criteria
analysis
ferences

decrease with an increase in duration. The
of the values obtained show that phase dif-

(up to half a cycle) do not influence very

much the drought duration or the volume of deficit for

A program was prepared to compute drought
characteristics as defined in-Section 5-3, namely the
drought magnitude, Eq. 5-2, the drought durations for
its given magnitude and the corresponding deficit.
Figures 5-1, 5-2, and 5-3 shown supply and demand
series, for the three cases of phase differences.
Figures 5-4, 5-5, and 5-6 show the drought magnitude
computed for a set of samples each of 30 years of
monthly flows, as well as the cumulative deficit
during the drought of a given duration for the three
phase differences between the supply and the demand.

Values of drought characteristics as shown in
Figs. 5-4, 5-5, and 5-6, are presented in Table 5-1.
Figures 5-4, 5-5, and 5-6, give an idea of the range
of values of the drought magnitude criteria and its
duration. The selected value corresponds to the maxi-
mum deficit. It should be noted that generally the
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Fig. 5-1 Supply Series (Periodic-Stochastic) and
Demand Series (Periodic) for the Case Study
with No Phase Difference [31{“)'93 = 0.0].
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Fig. 5-2 Supply Series (Periodic-Stochastic) and
Demand Series (Periodic) for the Case Study

with Phase Difference of [el(u] - a;] = n/2.

the case

study.

However, it should be recognized that

these results apply only to the selected values of

the case

Table 5-1 Values for Drought Characteristics of the

study and no genmeralization could be made.

Case Study with Three Phase Differences
between Supply and Demand Series.

Phase Drought Duration Volume
difference magnitude in deficit
months
0 .6376 43 27.4169
/2 L6969 42 29,2717
m .6734 42 28.2812
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Demand Series (Periodic) for the Case Study
with Phase Difference of w, [Bl[u} - 0; =

n].
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Drought Magnitude (1) and Corresponding
Volume Deficit (2) for Given Drought
Duration, Which Correspond to the Case
Study of No Phase Difference.
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Chapter VI
CONCLUSIONS

The main contributions and conclusions of
investigations in this paper are;

(1) For a unidimensional case, an exact
expression for the longest run-length of a given kind
for a Markov chain has been developed, based on
Bateman's work as presented by Eq. 2-37. The analysis
provides an adequate approximation to distributions of
the longest run-length of unidimensional dependent
series following the first-order linear autoregressive
model for values of the first serial correlation coef-
ficient not greater than Py = 0.4,

(2) For a bivariate case, with the two
components serially and mutually dependent, serially
dependent but mutually independent, and serially inde-
pendent but mutually dependent, transformation to the
univariate case is accomplished by defining the new
random variables. To obtain the four-state Markov
chain approximation to the serially and mutually
dependent components of a bivariate series, of the
first-order linear autoregressive dependence of each
component, the quadrivariate normal distribution and
its integration is performed by using the tetrachoric
series expansion. The approximation seems to be
satisfactory for values of the first serial and cross
correlation coefficients up to 0.4, For better re-
sults, more terms should be included in the series
expansion. Since lumpability requirements are too
restrictive, the use of transformations of bivariate
to univariate cases and of the Markov chains as ap-
proximations to autoregressive models for the new uni-
variate variables, gives good approximations.

(3) For the distribution of the longest
run-length of a given kind in a sample of size n for
serially and mutually independent, and serially inde~-
pendent but mutually dependent components of bivariate
processes, an exact expression is developed, based on
the analysis of the four possible outcomes and the
work by David and Barton.

(4) The experimental Monte Carlo method was used
to find the distribution of the run-sums in bivariate
processes with serially and mutually dependent compo-
nents.

(5) Frequency distributions of selected runs for
the study of serially and mutually dependent compo-
nents of bivariate processes were obtained by using a
bivariate linear autoregressive model. Results are
presented in the form of estimated parameters of
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fitted probability distribution functions to experi-
mentally obtained frequency distributions. Discrete
probability distribution functions are fitted to
frequency distributions of run-length, and continuous
distribution functions for the run-sums.

(6) For the run-lengths of infinite populations,
the negative-binomial distribution is found adequate
to approximate the frequency distributions of nega-
tive-negative and negative-positive run-lengths of in-
finite series. In finite samples of data a mixture of
two geometric distributions is found adequate to ap-
proximate the frequency distributions of negative-
negative and negative-positive longest run-length.

(7) Distribution functions of gamma type,
transformed by Laguerre polynomials, are used to ap-
proximate joint distributions of negative-negative or
negative-positive run-sums and run-intensities,
respectively, for infinite series. Expressions for
coefficients of Laguerre polynomials are obtained and
coefficients in multiple regression equations
determined for parameters of joint distributions.
the negative-negative largest run-sum in samples of
size n, the Pearson Type I distribution function is
selected as an approximation, and the Pearson Type IV
distribution function is selected as an approximation
for distributions of the negative-positive largest
run-sum in samples of size n, with parameters of the
Pearson Type I and IV distribution functions.

Multiple linear regression equations are determined to
express the estimated parameters of fitted probability
distribution functions in terms of parameters of the
underlying bivariate processes and the two truncation
levels in conclusions (5), (6) and (7).

For

(8) Explained variances by the multiple
regression equations for the parameters of distribu-
tions fitted to frequency distributions of run vari-
ables of infinite series are much higher, on the
average, than the corresponding explained variances
for run variables in case of samples of a given size.

(9) The present theory of runs is not adequate
to treat the periodic-stochastic processes. At the
present stage an alternative type of drought analysis
has to be used. A case study based on a particular
monthly data series and drought parameters shows that
the parameters are not affected significantly by the
differences in phases up to a half cycle between sup-
ply and demand.
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Abstract: Methodologies for analysis of droughts are pre-
sented for stationary and periodic-stochastic processes.
Droughts are studied by means of the theory of runs. Dis-
tributions of the longest run-length and the larpest ram-
sum in a series of a given length, and distributions of
the run-length and the run-sum of infinite series for
various cases of univariate and bivariate series are in-
vestigated. Exact, approximate or experimentally obtained
expressions are presented for univariate and bivariate
independent and dependent series. For hivariate series
combinations of serially independent and dependent, and
mutually independent and dependent series are studied.
When exact analytical solutions could not be obtained, the
data generation method is used. Frequency distributions
of various drought characteristics associated with the
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runs, obtianed by the generation method for the bivariate
case, are fitted by discrete or continuous probability
distribution functions. Multiple regression analysis is
used to obtain useful relationships bhetween the parameters
of fitted distribution functions and the parameters of
time series dependence, cross dependence and the trunca-
tion levels. Periodic-stochastic series are studied by
defining drought and its parameters for this particular
type of hydrologic processes.

Reference: Guerrero-Salazar, Pedro, and Yevjevich, Vijica,
Colorado State University, Hydrology Paper No. B0,
(September 1975), Analysis of Drought Characteristics by
the Theory of Runs.
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