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ABSTRACT 

Methodologies for analysis of droughts are presented on the basis of objective defini tions of droughts for 
stationary and periodic-stochastic processes . Dr oughts of- stationary series are studied by means of the theory 
of runs. Distributions of the longest run-length and the largest run-sum i n a series of a given length, and 
distributions of the run- length and the run-sum of infinite series for various cases of univariate and bivariate 
series are investigated. Exact, approximate or experimentally obtained expressions are presented for univariate 
and bivariate independent and dependent series . For the bivariate series all combinations of serially indepen­
dent and dependent, and mutually independent and dependent series are studi ed. Where exact or approximate ana­
l ytical solutions could not be obtained, the data generation method is used, with results checked by using par­
ticular cases for which the exact solutions are available. Frequency distributions of various drought 
characteristics associated with the runs, obtained by the generation met'hod for the bivariate case, are fitted 
by discrete or continuous probabi l ity distribution functions, respectively for the run-length and the run-sum. 

Multiple regression analysis is used t o obtain useful relationships between the parameters of fitted 
distribution functions and the parameters of time series dependence, cross dependence and the truncation levels 
of the basic series . 

Periodic-stochastic series are studied by defining drought and its parameters for this particular type of 
hydrologic processes. New approaches and techniques are presented with a case study illustrating the power of 
these new approaches. 

PREFACE 

Pressure for a higher standard of living and the 
increase of world population continuously require more 
food, energy, raw materials, industri~l production and 
various services. The inevitable result is the in­
crease in pressure with time on all types of world­
wide available water resources. Because these renew­
able natural resources on continental areas are con­
stant, in their averages, regardless of their space 
and time variations , sooner or later the increase in 
water demand faces space and time shor~ages because of 
stochastic variations in water supply and demand. The 
experiences and investigations show that the risks of 
water shortage incr eases rapidly with an increase of 
utilization of the t otal avail abl e water resour ces in 
an area . Particularly sensitive in this r egard is the 
food production as the most important commodity of a 
world living on the margins of balance between food 
supply and food demand. Usually water shortages of 
drought proportions have the largest impact on the 
agricultural production . 

Confusion governs the selection of random 
variables which are used to define the concepts of 
water shortages, deficits and droughts. Differences 
between water demands and water supplies , as periodic­
stochastic processes , are crucial in defining the 
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shortages, deficits and droughts . Difficulties often 
arise wit h the meaning of the terms such as water de­
mand , requirement, use, consumption , deliveries, 
rights, and accompanying factors. It is rare to meet 
two individuals of different professional backgrounds 
who have the same connotation of the t erm "drought." 

International organizations (such as UNO, UNDP , 
FAO, UNESCO, WMO, r egional UN commissions , scientific 
and professional associations) and national and r e ­
gional organizations are concerned with both the broad 
and the specific problems related to drought phenom­
enon and its consequences. International conferences 
are held on populat ion, environmental control, food 
production, food distribution, eventual international 
food storage, and on similar subjects which are 
strongly relat ed to droughts. Characteristics of 
these meetings are discussions in generalities, often 
without suffi cient scientific information for claims, 
positions and proposal s. Feeding the world population 
and t he estab.lishment of world- wide food storage cen­
ters are ever-incre~singly important issues of a very 
sensit ive character. Only the most correct informa­
tion, on an advanced scientific level , can r eplace the 
subjective approaches by a more object ive analysi s and 
decision making process. 



Three characteristics related to drought 
consequences and drought control technology can be 
distinguished at present: 

(1) An unusually high emphasis is given to 
atmospheric circulation in search for explanations and 
predictions of droughts and related agricultural food 
production. This emphasis may enhance the under­
standing of atmospheric processes but definitely lacks 
predictability of droughts of long duration , large 
water deficits and extensive areal coverages . 

(2) Great attention is paid to droughts of 
semi-arid and arid regions of presently marginal agri­
cultural production, while a surprisingly small atten­
tion is given to drought risks and necessary drought 
control technology to mitigate its consequences in the 
semi-arid regions of presently substant ial world food 
production (US Midwest, USSR steppe, Canadianprairies, 
Argentinian pampas, Australian wheat regions, and 
similar areas). Droughts in the marginal regions 
cause stress on several millions of people, while 
droughts in the large food-producing regions do not only 
disrupt the world food prices but also involve the fate 
of hundreds of millions of people. 

(3) It is a common and necessary expectation to ~ 

search for new agricultural technologies and new 
arable lands in order to increase the food production. 
This line of activity is and should be the principal 
thrust for an increase i n food supply. However, sta­
bilization of food production by using the presently · 
available technologies and lands already under culti­
vation, and finding solutions for random fluctuations 
in .food supply, represent a task as important as the 
search for new technology and new lands . In several 
aspects, this stabilization and solutions for fluc­
tuations in food production may be as important and 
productive as the search for new technology and new 
lands . Understanding the drought phenomenon, and 
particularly finding the best mix of drought control 
measures specific to each re.gion, for solving the 
problems of stabilization in food supply, including 
the establishment of food storage centers, are the 
challenging tasks ~o a multidisciplinary scientific 
approach. 

Random variables must be well selected if they 
are to be meaningfully used for definitions of water 
shortages, deficits and droughts. Soi 1 moisture, pre­
cipitation, evaporation, ground'water levels, river run­
off, state of water storage in reservoirs and lakes, 
snow and ice accumulation and melting, and similar 
variables are periodic-stochastic space-timeprocesses, 
which must be used either individually or in combina­
tions, and according to the problem at hand, for the 
definition of the three concepts of shortages , defi­
cits and droughts. It seems that as many definitions 
of these three concepts are available as there are in­
vestigators. This creates confusion among the users 
of information on droughts. In general, droughts are 
associated with water defi cits of long duration, high 
intensity of deficits, and large areal coverage, usu­
ally involving all water resources variables and users, 
having significant economic and social consequences. 
Deficits can be related to the lack of water at a 
given place for a given time interval, with the rela­
tively moderate consequences. Shortages are a smal l 
negative difference between water demand and water 
supply, with readily acceptable consequences. Defini­
tions of the three concepts of droughts, deficits and 
shortages, acceptable to a majority of professionals 
in the world, need a universal acceptance. 

Droughts are a creeping-type disaster phenomenon. 
In studying physical aspects of droughts, the fol­
lowing properties of drought-defining variables are of 
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practical significance: duration of shortages, total 
water deficits over this duration, areal coverage by 
this total deficits, intensity of largest shortages, 
and similar random variables. These variables are 
best described by joint or marginal probability dis­
tributions of individual variables. The properties 
of these random variables are related either to popu­
lation or to samples of various sizes . Assuming a 
multivariate or a uni variate of water supply vari­
able(s) as the input process, and a multivariate or a 
univariate of water demand variable(s) as the output 
process of agricultural and water resources systems, 
the crossing of these two time processes provides the 
necessary information for computing or estimating the 
probabilities of drought properties. Furthermore, the 
economic drought properties , as functions of a mutually 
dependent set of random variables, therefore also as 
random variables , are necessary for solutions of 
drought problems, 

In contrast to atmospheric circulation approach 
to drought investigations, investigations of prQbabil­
ity distributions of drought properties should be 
realistically based on past records of sel ected cli-

.. matic and hydrologic random variables, under the fol­
lowing two basic hypotheses: 

(1) Inferences on population characteristics of 
drought properties, based on drought-definingperiodic­
stochastic variables, are subject to sampling errors 
(often with historic non-homogeneity and systematic 
errors in samples, which must be first identified and 
removed), requiring the unbiased and most efficient 
estimation techniques; and 

(2) General climate and resulting hydrologic 
periodic-stochastic processes over the next 150-200 
years will have essentially the same population char­
acteristics (structures and parameters) as the records 
of tpe past 150-200 years demonstrate; this assumption 
has a strong support, namely that of a temporary sta­
tionarity of annual values of these periodic-stochas­
tic processes, regardless of a continuous production 
of papers with the claims of expected sudden changes 
in the climate . 

Reliable probabilistic characteristics of drought 
properties are fundamental as the information for any 
advanced approach to technologic, economic and social 
aspects in drought investigations and related decision 
making . Economic aspects are basically of two types : 
(a) measurement of and modeling the economic d.amages 
and regional consequences due to droughts; and 
(b) economic benefit- to-cost analysis for optimiza­
tion in selecting a mix of drought control measures. 

In connecting probabilities of physical drought 
properties to economic drought impacts, especially in 
the agricultural production , new indices are needed on 
droughts if information produced should seriously af­
fect the decision making process . Furthermore, a re­
lationship exists between physical drought properties, 
loss ·of agricultural production and the population 
involved. This then requires additional indices and 
mathematical modeling in order to take into account 
all factors. Social consequences of droughts, with 
all the political implications, represent a synthesis 
of drought analysis and drought control. They are 
less prone to be measured by indices or by mathemat ­
ical modeling, usually being analyzed by descriptive. 
methods. 

Drought investigations cannot be productive 
without using advanced methodologies in selecting 
drought control measures, as the drought control tech­
nology, by optimizations and particularly well 



designed decision making process . For a future 
development of such methodologies, the following as­
sumptions are necessary: 

(1) Drought control ~asures may be divided 
into internal measures to a water user and to external 
measures t o all or most of water users . Internal mea­
sures are such as moisture or water conservation in­
side a production unit, various types of adjustments 
to water shor tages, replacements, changes in the pro­
duction mix and technology, and similar measures. 
External measur es are basical l y water st orage and 
regulation outside t he production uni ts, uni -direc­
tional water transfer, water interchange between adj a­
cent r egions, and weather modification . Furthermore, 
insurance against drought losses and storage of vari­
ous products in water surplus times for ~~ater deficit 
times complement t he classificat ion of drought control 
measures in t heir most general treatment. 

(2) Because of large varieties and a range of 
levels of drought control measures , it should be 
rarely expected that only a single measure would re­
sul t as an economic and social optimum. More often 
than not, a mix of most of rel evant drought control 
measures would come out to be a global optimum for a 
given region. 

(3) Treatment of drought control measures is 
an interdisciplinary and multidisciplinary problem, 
subject to a most effective treatment only by a team 
of specialists and general ists . 

(4) The systems analysis is a good approach to 
major drought probl ems, not only for drought descrip­
tion, responses to it , determination of its loss func­
tion and the select ion of an optimal mix of drought 
cont rol measures, but al so for i ncorporating inputs 
from various disciplines for both a large-scale and a 
small-scale approach to drought investigation problems. 

The contri butions to drought investigations 
until 1968 have been presented in t he form of anno­
tated references in the publication "Drought Bibliog­
raphy," prepared by Wayne C. Palmer and Lyle M. Denny, 

U.S. Department of Commerce, National Oceanic and 
Atmospheric Administration, Environmental Data Ser­
vice, NOAA Technical Memor andum EDS 20, Silver Spring, 
Haryland, June 1971. Though i t does not contain all 
the l iterature on a world-wide basis , this bibliog~ 
raphy gives a good i nsight to problems t r eated, 
approaches used, and indirectly to the state-of-the­
art of various aspects of droughts. 

Research on continental droughts has been going 
on for more than a decade at Colorado State University 
in the Hydrology and Water Resources Program of i ts 
Civil Engineering Department. Different aspects of 
large drought s , involving long duration, significant 
ll'ater deficits, large areal coverage, and econo·mic 
impacts on a r egion have been investigated. The pres­
ent paper "Analysis of Drought Characteristics by the 
Theory of Runs" is a continuation of research carried 
out previously by using the probability t heory, math­
ematical stat isti cs , and stochastic processes under a 
strict objective definition of drought characteristics. 

The paper f irst reviews the state-of-present­
knowledge of droughts of both univariate and bivariate 

·processes . However, the main emphasis and contribu­
tion are on dr ought characteristics for bivariate 
processes, mainly concerned with drought s of two rep­
resentative variables. These t wo variables may be 
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the time series at two selected points, average char­
acteristics of time processes of drought defining 
variables of two areas or regions, water yields of two 
river basins, two reservoirs, two aquifers, or their 
combinations. The major thrust of the paper is 
intended to contribute to a future methodology of 
studying l arge continental droughts using the water 
suppl y and demand variables which best define a given 
drought problem. 

Vujica Yevjevich 

September 1975 
Fort Collins , Colorado 



Chapter I 

INTRODUCTIO N 

1-1 An Overall Review of D~ught Definitions 

I t is difficult to come out with a universal and 
commonly accepted definition of a drought. Several 
authors have tried to define a drought under different 
conditions, such as the agricultural drought , climato­
logical drought, hydrological drought, etc. 
(Subrahmanyam, 1967). 

A drought is defined in this study on the basis 
of differences between the processes of water supply 
and water demand. The supply processes or supply time 
series may be the precipitation over an area , the 
streamflow at a given point of a river, moisture in 
t he soil, storage of water in an aquifer or reservoir, 
and similar hydrologic variabl es. The demand process 
or demand time series may be a single- purpose water 
use, such as water used for agricul ture , for contin­
uous or supplemental irrigation, hydropower , water 
supply , low f l ow augmentation for qual i ty control, or 
the demand process may result from a combination of 
various water uses . When the demand exceeds the 
supply, the water shortage occur s, and t his is the 
general condition for drought initiation. 

Natural and artificial water retentions affect 
highly the initiation and duration of a drought. The 
retention occurs naturally in the soil in case of dry 
farming , or it can be artificial as i n case of reser­
voirs for runoff regulation. Natural storage is con­
sidered in this study as a par t of water supply. 
Artificial storage is considered both as a part of 
water supply when it already exists and as a drought 
alleviation measure when it is only planned . 

The drought analysis is based on time series of 
water supply and water demand. It i s sometimes 
claimed that reliable data both on water supply and 
water demand are difficult to obtai n even in devel oped 
countries. With sufficient efforts, r egardless of 
the relatively scarce data , it is feasible in most 
cases to gather suffi cient information on water suppl y 
and water demand for investigation of drought related 
problems . The periodicity of t he year i n various 
parameters of water supply and wat er demand makes t he 
anal ysis of droughts somewhat difficult , so t hat the 
study of droughts with time intervals of less than a 
year warrants a special at t ent ion. 

A drought is defined here as the deficiency in 
water supply over significant time to meet the water 
demand for various human activities. This deficiency 
is mainly produced both by the random character of 
natural processes that control the distribution of 
water in space and time on the earth's surface, and 
by randomness in water demand. 

The existence of variety of climates over the 
earth surface implies that droughts should vary ac­
cording to climatic characteristics. The climates as 
classified by Thornthwaite (1948) are arid, semiarid, 
semihumid and humid. The climate determines the nat­
ural biological cover. Combined with human activities 
it produces the water demand, which differs from re­
gion to region and from one time interval to another. 
The long-term stochastic fluctuations with large vari­
ations around the mean of available water makes the 
problem of long and large droughts much more important 
i n arid and semiarid regions than in s emihumi d or 
humid regions. 

1 

An obj ective definition of droughts, based on the 
theory of runs, may be used for stationary time series 
(Yevjevich, 1967, 1972b).. For the univariate case and 
discrete time series of water supply, a selected arbi­
trary variable value or truncation level X

0 
may rep-

resent the water demand, as shown in Fig.' 1-1. The 

Fig. 1-1 
• 

X· I 

Def1nitions of Posi t i ve Run-Length , m, 
Positive Run-Sum , S, Negative Run-Length, n, 
and Negative Run-Sum, D, for a Discr et e 
Series, xi. 

discrete series truncated by this constant x
0 

gives 

two new truncated series of positive and negative dif­
ferences. A sequence of consecutive negative devia­
tions preceded and followed by positive deviat ions is 
called a nega~ive run-length (n in Fig . 1·1); it may 
be associated with the duration of a drought . In this 
context, the definition was used by Llamas and 
Siddiqui, 1969; Saldarriaga and Yevjevich , 1970; 
Millan and Yevjevich, 1971; and Millan, 1972 . The sum 
of all negative deviations over such a run- length is 
called the negative run-sum (Din Fig . 1-1), and the 
ratio of the negative .run-sum and the negative run­
length is called the negative run-intensity (D/n , 
Fig. 1-1). 

For a two-dimensional process {X., Y. }, with 
l 1 

distribution F(x,y), the following concept s can be 
used (Yevjevich, 1972b). Two cros sing or t r uncation 
levels are now used, denoted by x

0 
and y

0 
(Fig. 

1-2), which ar e not necessar i l y of the same 

Fig. 1- 2 Definitions of Joint 
Dimensional Process, 
Crossing Leve ls, x

0 

Run-Lengths of a Two­
with Two Constant 
and y

0
. 



probability for each marginal distribution . Four 
events are obtaine~ as shown i n Fig . l-2 : both devia­
tions are positive which define the joint positive 
run-length (m ); both deviations ar e negative which xy 
define t he joint negative ~un-length nxy; xi are 

posit ive and yi negative deviations which define the 

joint positive-negative run- l ength (U ); and x. are xy 1 
negative and yi positive deviations which defi ne t he 

joint negative-positive run-length (V ). The joint 
xy 

run- sum is defined as the sum of deviations of both 
the run-sum in xi and the corresponding run-sum in 

y1 over the corr espondi ng j oint run-length . Conse­

quently, there are four different types of run-sums, 
one for each of the four types of joint r un-lengths. 
The joint run-intensities are defined as t he joint 
distribution of the intensity in x and the intensity 
i n y over the joint run-iength . 

For the case of hydrologic periodic-stochastic 
series , the theory of runs cannot be used directly 
and simply as in the case of stationary stochastic 
processes, because of the periodicity invol ved . In 
this case cri teria must be developed concerning the 
parameters of drought magnitude, duration and volume. 
For the unidimens i onal case, the drought magnitude 
criteria can be defined as the minimum of the mean 
monthly difference between supply and demand over the 
duration of a drought. 

l-2 Obj ectives of Investigati ons 

The first objective of this study is to determine 
the· joint probability distribut ion of hydrologic 
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droughts for two hydrologic time series, concurrently 
observed at two l ocations. The second objective is to 
find the rel ations of characteristics of probability 
distri butions of joint drought occurrence at two loca­
tions and the st atistical parameters of t he corre­
sponding two hydrologic time series. Since the theory 
of bivari ate runs has not been developed yet 
(Yevjevich, 1972b) , this study is a contribution to­
war ds this goal . The t hird objective is initiate a 
development of a methodology of studying droughts of 
hydrologic periodic-stochastic processes , exemplified 
her e by mont hly time seri es . 

1-3 Organization of th~ Study 

The study of droughts of the bivariate stationary 
case is presented in Chapter I I by giving the exact 
analytical expressions for t he simple cases and by 
anal ytical approximations for the more complex cases . 
The experiment al (~1onte Carlo) approach, which was 
used for cases for which even the approxi mate expres­
sions are not available, is presented in Chapter III. 
Results of the experimental approach are given in 
Chapter IV. Discrete density functions are fitt ed to 
f r equency distributions of run-lengths, while cont in­
uous density functions of the Pearson family of func ­
tions, and series expansion approach, are used to fi t 
the frequency distributions of run-sums. This approach 
allows the parameters of distributi ons to be expressed 
in terms of basic statistics of the two underlying 
hydrologic t i me series by using the multiple regres­
sion equations . Since the theory of runs of station­
ary series is not adequate for the analysis of 
drought s of periodic-stochastic processes, the runs 
of these processes are discussed in Chapter V, with 
an example. 



Chapter II 

ANALYTICALI~VESTIGATION OF DROUGHTS OF STATIONARY TIME SERIES USING NEGATIVE RUNS 

The theory of runs as us~d here to investigate 
the droughts of stationary stochastic processes has 
been a topic of inquiry for a long time. Reviewing 
the statistical literature one observes that several 
definitions of runs are used. 

2-1 Definitions of Runs 

Three definitions have been proposed in literature 
for runs called here: classical, recurrence and 
Mood's definitions. 

Classical definition of runs. This definition is 
probably given first by De Moivre, Uspensky (1937) , 
among others. It is defined as a success-run of 
length r in a series oEindependent trials when a 
success occurs at least r times in succession. In 
Feller's words (1957), it is an uninterrupted sequence 
of either exactly r or of at least r successes. 
According to Feller, this definition has the following· 
drawback. If exactly r successes are required, a ' 
success at the (n+l)-th trial may make null the run 
completed at the n-th trial. On the other hand, if at 
least r successes are required, every run may be 
prolonged indefinitely, and the occurrence of a run 
does not reestablish the initial situation. 

Recurrence or Feller's definition of runs. A run 
of length r (Feller, 1957) to be used in recurrence 
theory is uniquely defined with the counting starting 
every time a run occurs. Namely, a sequence of n 
events of 0 and 1 contains as many runs of 0 of the 
length r as there are non-overlapping and uninter­
rupted blocks containing exact~y r events of 0 . . 
Th'is definition is not well su1 ted for the analySls of 
droughts, since it does not say when a run starts or 
when it finishes, because a run-length of three zeros, 
for example , may ~e preceded or succeeded by zeros. 

Mood's definition of runs. Mood ' s (1940) 
definition seems the most suited for the analysis of 
droughts because a run is defined as a suc~ession of 
similar events preceded and succeeded by d1fferent 
events, with the number of elements in a run referred 
to as its length, as shown in Fig. 1-1. 

The above distinction of various definitions of 
runs is needed because the articles in the statistical 
literature sometimes treat runs without clarifying in 
which sense the ' term "run" is used. A reader may be 
often misled. Mood's definition of runs is the defi­
nition used throughout this study only. 

Runs as they are used in statistics are 
characterized as a philosophy and a technique 
(Wolfowitz, 1943). The ordering of observations ac­
cording to some characteristic is always i nvolved, and 
the results of this ordering is again ordered ac­
cording to some other characteristic. In the case of 
hydrologic applications, the characteristic which de­
fines runs is the occurrence of series values above or 
below a certain level. This level does not need to be 
the same for all time positions. 

2-2 Approaches to Analysis of Run-Length 

In the application of the theory of runs to 
hydrologic problems two approaches have ~een fol ~owed 
in various studies of run lengths: the 1ntegrat1on 
approach and the combinatorial approach. 
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The integration approach refers to runs of an 
infinite population , which in the case of stationary 
and ergodic series is synonymous with the first run. 
In this context the term infinite population will be 
used. The combinatorial approach treats the runs in 
a sample of given size. 

For the case of run-length, the integration 
approach is based on finding the probability 

p (run-length= k) ~ P (xi> C; xi+l ~ C; . . . ; 

X. k < C; X. k 1 >C). l+ - 1+ + 

If the joint distribution of the xi's is known, the 

integration approach gives the required probabil ~ty .. 
If the time process is independent, the computat1on 1s 
simple because the product of the marginal probabili­
ties give the probability of the run-length . A draw­
aack in the integration approach is that it does not 
permit the computation of the probability of a r~­
length equal to k in n trials, which the comblna­
torial approach does. Furthermore, the analytical 
expressions for the other types such as the :on-sum, 
and the run-intensities are very complex to 1ntegrate 
for the dependent bivariate cases. 

Probabilities of various runs are studied in this 
chapter by using the theory of runs for the case of 
infinite population and for both the univariate and 
the bivariate cases. The exact analytical solutions 
are obtained only for simple basic processes, while 
approximations are obtained for more complex_ cases. 
The data generation or Monte Carlo approach 1s use~ 
for those cases for which neither the exact analyt1cal 
nor approximate analytical solutions are feasible. 

For the combinatorial approach the run sample 
statistics studied differ according to the objective 
for which the run theory is used. Such statistics are 
the total number of positive and negative runs regard­
less of their length, the total number of runs of a 
given kind, the longest run-length of either kind, the 
longest run-length of a given ki nd, the largest run­
sum, the other run-sums, the run-intensities, and any 
other statistic of i nterest. For drought purposes, 
types of common interest such as the longest and the 
second longest negative run-length, and the largest 
and the second largest run-sum, are investigated in 
this paper. 

The combinatorial approach in the case of 
run-lengths makes use of a transformation to a zero­
one process. Whenever a value is below the trunca­
tion level the new random variable is one and whenever 
a value is greater than the level the new variable is 
zero. Taking advantage for the independent case of 
the fact that the new var iable has a Bernoulli distri­
bution of events 0 and 1, the combinatorial approach 
may be used. For the independent case, as shown 
later, it is simple to obtain the probability: 
P (run-length~ kin n trials). 

The combinatorial approach is adequate for those· 
hydrologic problems which relate to the probability of 
extreme events in a sample, for example a drought 
duration of a given probability to occur in the life 
of a project of n years. This approach is used in 
this paper to obtain the analytical approximations or 
exact expressions for the most simple cases of 



underly.ing stochastic processes, The resul ts are also 
used to check the experimental or Monte Carlo method 
of deriving the properties of runs in the sample of a 
given size for more complex cases. 

.-
The empirical method of studying droughts for 

stationary time series is discussed by Saldarriaga and 
Yevjevich (1970) for runs of infinite series. The 
sampl e data obtained by the empirical techniques are 
used to determine the probabilities of durations of 
droughts. The empirical procedure is as follows. 
Run-l engths are measured with respect to a given trun­
cation level and the relative frequencies of run­
lengths that are greater than a given duration are 
computed. These frequencies provide the estimates of 
probabilities. This enables the study of drought 
measures with droughts not to be exceeded, on the 
average, in a given number of year s . These f r equen­
cies are used as probabilities of droughts of a given 
duration, and as probabilities of all events equal to 
or greater than a given duration. Becaus e sample 
sizes of hydrologic data are small, large sampling 
errors are common in the estimates of these probabili­
ties. Drought probabi l ities are studied anal ytically 
making use of statistics of the basic processes. 
These have smaller sampling variations than t he above 
computed frequencies. A convenient anal ytical method 
is the theory of runs. Run-length properties are 
distribution free in comparison to run-sum and run­
intensity properties which are dependent on the type 
of the underlying distribution. 

2-3 Probabilities of Longest Run-Length in a Sample 
of Size n for Univariate Independent Process 

The study of the longest run-length in a sample 
of size n for independent series was initiated by 
De Moivre (1738) when finding the probability of a 
sequence of r successes i n n trials. Following 
Whitwor th (1896 , Propositions XXVIII and LII) an 
experiment succeeds. m times and fails n times, the 
probabil ity that the longest run- length of successes 
is l ess or equal to k in m + n trials is the coef-

ficient of xm in the expansion of the expression 

1 ( l-xk•l) n+l 

( m~n ) 1-X 
(2 - 1) 

This expression resulted from the number of ways in 
which m items can be distributed into n+l differ­
ent compartments with no compartment to be either 
empty or to have more than k+l items, which is the 

coefficient of xm in the expansion of the expression 

(
l - xk•l) n+l 

1-x 
(2-2) 

Similarly , Bateman (1948) presents the number of 
ways of arranging ri elements (i;l,2) into t parts 

none of which exceeds k in magnitude. In the same 
way, ~los teller (1941) presents the special case of the 
probability of one or more runs not less than k in 
length amongst all runs of values below the 
median. For Mosteller , the coefficient of xn in 

2 k-1 rl 
(X + X + .• , •• + X ) (2-3) 

gives the number of ways of part1t 1oning n e l ements 
into r

1 
partitions in such a way that no partition 
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contains k or more elements and none is void. 
Rewriting the above expression as 

r l [ k-1 J rl "' ( rl - l+t) t x (1-x ) L x , 
t;O r

1 
- 1 

the coefficient of xn becomes 

L c- 1)) 1 • 
r l . (r 't-j(k-1)-1) 

j ;Q j r 
1 

- 1 

or as Bateman presented it 

Y. (-l)j ( t)(n-jk-1) 
j•O j t - 1 

(2-4) 

(2-S) 

(2-6) 

r. 
which is ident ical to t he coefficient of x 1 

expansion of tho equation 
in the 

xt (1-/ )t 
1-x 

Furthermore, the number of ways of arranging 

elements into t parts of magnitude k is 

fi{t,k) • 1 (-1/+l( t ) fJ( ri-j(k-1)-1 ) 
j =1 j ~ t - 1 

-(':-~';')] 

r . 
l. 

(2-7) 

An explicit expression for the probability 
distribution of the longest run-length of a given kind 
in a series of n independent t r ial s was given by 
Bateman (1948). A sequence of r elements is .s t udied, 
of which r

1 
are of one type and r 2 of another 

type , with r
1

+r2 ; r. For example, a sequence of r 

years of annual precipitation is studied of which r 1 
years are deficit years and r 2 are surplus years, 

with r
1
+r

2 
u r . The total number of possible combi­

nations rcr
1 

which can be formed from the r ele­

ments constitutes the fundamental probability set . 
The subset of all combinations each cont ai ning at 
least one run-length of a given kind and of a given 
length gd can be determined by considering the par-

titions of r
1 

elements having k as the greatest 

part, where k • 1,2, ... ,gd and finding the number of 

ways in which they can be combined to form a combina­
tion with at least one part equal to gd and no part 

greater than gd . This may be achieved simply by con­

sidering the different ways in which such partitions 
of r

1 
form groups of length 2t or 2t+l, where 

t=l,2, . .. ,r
1
-gd+l for r1~r2 . There will be no loss 

of generality in assuming r1~r2 . 

The number of sequences of 2t groups with at 
least one group containing gd elements and no group 

containing more than gd elements, designated by 

N(2t, gdlr1,r2) is 



(2-8) 

The factor 2 is introduced ~o allow for the sequence 
to begin with either a deficit or a su rplus. In the 
same way, the number of.sequences of 2t+l groups of 
which the large~t ~s gd elements is 

fl (t+l,gd) 2 
· (r -1) 

t-1 

(2-9) 

The enumeration of the required subset is completed 
by summi ng N(2t ,gdlr1, r 2) and N(2t+l,gd lr 1,r

2
) over 

all groups, i.e., from t=l tot r 1-gd+l. Denoting 

this subset by N(gdlr
1
,r2) then 

.. 

(2-10) 

Factorizing and simplifying terms, Eq. 2-10 becomes 

r l-gd+l 

r fl(t ,gd) 

t • l 

Hen·ce in a sequence of r elements, r 
1 

deficit and r 2 are surplus, with r 1+r2 
r
1 
~ r 2, the probabil ity that the longest 

consists of gd elements is 

(2-11) 

of which are 

= r and 

deficit run 

(2-12) 

The probability of the longest negative run-length 
~eing equal to or longer than a given value, say gd, 
lS 

Equation 2-13 presented by Bateman (1948) is a more 
general equation than that given by Mosteller (1941). 
Mosteller considered the case of runs above and below 
the median, where r

1 
= r 2 = r/2 n, for a sample of 

even size, and derived the probability of obtaining at 
l ea.st one run equal to or longer than a given length. 
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Equation 2-13 for these conditions becomes the 
Mosteller 's equation. Replacing 

(
r +1) (~') 2 t by 

in Eq. 2-13, interchanging the order of summation, and 
using the relation 

then 

.. because m "' 

and i = t-j. 
of a deficit 
with 

then 

(2-14) 

r 
1 

- j(gd - 1) - 1, k = · j -1, n = r 
2 

- j + 1, 

If only r is given and the probability 
to occur is constant and equal to p, 

r rl r r 
( ) p (1-p) - 1 
rl, 

r 
E P(Gd~gd l r1 ,r] P[r1]. (2-15) 

rl=gd 

The pro·babili ty that a deficit occurs at .least 
g times in succession in a series of n independent 
trials with the probability p of the deficit at any 
trials is the well known problem of the "runs of luck" 
solved by De Moivre (1738). The same problem has been 
solved using difference equations by Uspensky {1937), 
and is also given by Whitworth {1896), Cramer (1946) 
and others. This can also be obtained using Eq. 2-12 
and summing up accordingly. 

Makin~ use of generating functions, denoting 
P = P, the longest run< (g-1) in n trials, and n,g -
P(Gd>gd) = 1 - P , their generating function is - n,g 

.. 
n 1-•Hx) ljl(x) r p X=---

n• l n,g 1-x 

= 
1 - p_g xg 

(2-16) g g+l • 
1 - X+ p q X 

so that the coefficient of the xn term is the 
probability that the longest run is less than or equal 
to (g-1) in n trials. The proof is given by 
Uspensky (1937, pages 78-79) and also through combina­
torial theory by Whitworth (1896, Proposition LIII) . 

The generating function ~(x) is a rational 
function and can be developed into a power series of 
x according to known rules . Uspensky shows that the 

coefficient of xn is 



r 
p = en,g - p a n,g n-g,g , (2-17) 

with 

(2 -18) 

and en-g,g is obtained by substituting n-g for n. 

David and Barton (1962) give a solution for Pn,g' 

based. also on the combinat orial analysis , as 

p .. 
n,g 

and 

n-r2 with a = min{r2+1, ( m+l)} , 
n+r2+1 

and n + 1 - r 2 ~ m + 1 ~ [~) 
2 

(2-19) 

The parameters of the above sampling distributions of 
the longest run-length are not available except for 
special cases but only as approximations . Cramer 
(1946) gives the asymptotic mean (valid for large 
sample sizes) of the distribution of the longest run­
length, gd, for the sample of size n as 

[ J log n ( ) 
E 8d = - log(l-q) + 0 1 ' (2-20) 

with q = P(x~C), C the truncation level, and 0(1) 
an error term of the order of one. 

Battcle (1946) studying the problem of 
repartitions gives ·asymptot ic equations for parameters 
of the sampling distribution of the longest run of 
consecutive successes in n trials, valid for 
(g/s)+O, with g the length of the longest run, and 
s the total number of successes, as 

q!] = ! [1 + ! 
s n 2 

1 -+ 
3 •• + ~] • 

and 

a 2 2 1 2 
E [(~) J • n(n+l) [1 + f(n) + 2 (f(n)) J, 

with 

1 1 
f(n) .. 2 + 3 + • + 

n 

(2-21) 

(2-22) 

(2 - 23) 

Burr and Cane (1961) present approximations to 
the exact expression presented previously by Whitworth 
and Mosteller. Another approximation presented by 
David and Barton (1962) is 

(2-24) 

which is valid for large gd and r ~ 20. 

6 

2-4 Probabilities of Longest Run-Length in a Sample 
of Size n for Univariate Dependent Process 

Approximation of the first-order linear 
autoregressive model by Markov chains. The case of 
the uni-dimensional dependent time series can be 
solved for the first-order linear autoregressive 
model, 

where p is the first ~ Jrial correlation coefficient 
of the standardized ser · es x; and ti is a sequence 

of independent identically distributed variables. 
This model is approximated either by a first -order 
Markov chain or better by a second-order Markov chain. 
The approximation for the fir st -order Markov model is 
then 

P(xi+l $ Cjxi~c •... ,xi-n ~ C] 

P[xi+l~clxi~c)(l+~(p2)], (2-25) 

with ~(p2) an error term. Millan (1972) found that 
for p ~ 0.4 the approximation is good. In the case 
of a first-order Markov chain used to approximate the 
first-order autoregressive model, the transition prob­
abilities may be obtained by using the autoregressive 
model, namely 

P1 = P[x. 1sCix.sC] 
1+ 1 

P[xi+lsc, xiSC] 

P[xisC] 

(2-26) 

with the joint probabilities obtained from tables for 
the case of a normal distribution. The transition 
probability values are 

P[x.~Cjx. 
1

>C] 
1 1-

(2-27) 

Development of probability distribution of the 
lon est run-len th for sim le Markov chains. Bateman 
(1948 obtained the distribution of the longest run 
in n trials regardless of its kind. The probabil­
ity distribution of the longest run of a given kind, 
say the negative run, in a sample of size n, as 
developed in this paper, is outlined below. Con­
sidering the partitions of r

1 
and r 2, for each 

partition within a given riumber of 2t or 2t+l 
groups, the multiplying probabilities are the same 
as the number.of transitions from (xi>C) to (xi-l~C), 
and the oppos~te . 

Thus for a given sequence of 2t groups 
beginning with (xi~C) there are 2t- l transitions, t 

from (xisC) to (xi_1>C) and t-1 from (xi _1>C) to 

(xi~C), while th~ remaining r
1
-t and r 2-t cases 

are continuations of (x
1
sC) and (xi>C), respectively. 

The probability of obtaining a given sequence of 2t 
groups is 

r -t r - t r -t r -t 
pp 1 pt-1 Qt1 Q 2 · ·QQt-1 Q 2 p 1 pt 

1 2 2 12 1 2 
(2-28) 



which may be written as 

(2-29) 

In t he same way, the probability of ob~aining a 
sequence of t+l groups of (xisC) and t of (xi >C) is 

~ ( P2Ql ) t prl r 2 
pl Q2Pl 1 Q2 (2-30) 

and t groups of (xi~C) and t+l of (xi>C) is 

t 
g_ l P2Q1 l rl r2 
Q2 Q2Pl j Pl Q2 

(2-31) 

The joint probability distribution of 2t and g is 

Simil arly for 2t + 1 

r(2t•l,:Jirl'r2] 

lr ( P2Ql)t(t (t, t,&) !- • ~)• . (t•l, t ,f) ;- • t (t,t•l,&)_Q_l • 
t i ~pI 2 1 1 Ql 

(2-33) 
in which 

The probability distribution of g is obtained by 
summing over all t from t = 1 to r 1 - g+l, or 

P(glr1. r 2J 

(2-35) 

Since 

then 
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(2-36) 

To obtain the cumulative distribution funct ion of the 
longest run of one kind in a series of Markov chain 
trials, a summation is made from g = 1 to g • gd, so 
that 

and 

with 

gd 
. P[g~gdlr1 ,r2 ] • L P[G = g jr 1,r2) 

&'"1 

gd 
L P[G • gjr1,r2] P[R1=r1} 

gwl 
(2-37) 

(2-38) 

used throughout this develop~ent. 
'arrived at by using the relation 

This condition is 

P[E.] = P(E. 
1
E.] + P(E. 1E.] , 

l. 1- 1 1- l 

on the assumption that P(E.) = P and P(E.) = Q for 
1 1 

all i. It is assumed here that the probability of 
the event E occurring at the i-th trial, when noth­
ing is known about the results of the preceding 
trials, is independent of i. This i n effect implies 
that the start of the sequence of observations is a 
randoml y selected point in a longer sequence following 
the same probability laws. 

Millan (1972), working independently, obtained 
the conditioned distribution of the longest run-length 
in a series of dependent trials (Markov chain type) of 
size n, making use of the developments of Gabriel 
(1959) and Whitworth (1896), which are a different 
approach than the one used in this study, as 

\ c1 P[g :: gd] = E L L(s,g,a) + L(s,&,a+l) (s) (n-s-1) 
s-1 +(s-1) a b-1 

s•l c=l Ca-l) a 

l 1-P r [p r 1-P~ P~· pl s (l-P2)n-s \ P [Rl-r 1] 

(2- 39) 

i n which 

L(s,m,e) (2-40) 

with 

asmin{e, (s~e)}' 

and 



s+e-1 
s - e + 1 > m > [--) • - • e 

L(s,m,e) represent the number of ways in which s 
elements can be arranged into_. e intervals, each of 
which contains at least one element and the largest of 
which contains m or less elements. Equation 2-37 
becomes, then , the expression for the probability dis­
tribution of the longest run of a given kind, say the 
negative run , in a sample of size n fo r a simple 
Markov chain , which also can be used as an approxima­
tion for the first-order linear autoregressive models. 

2-5 Probabilities of Longest Run-Length in a Sample 
of Size n for Bivariate Cases 

For the t wo-dimensional or bivariate cases, a 
similar approach to the one used for univariate series 
is followed for two series in four alternatives : 
(1) serially and mutually independent; (2) serially 
independent but mutually dependent; {3) serially de­
pendent but mutually independent; and (4) both seri­
ally and mutual ly dependent. All four a lternatives 
are studied even though only the second and f ourth 
cases are likely to occur in hydrologic problems . 
Furthermore, for each of these four alternatives there 
are four types of run-lengths, as defined previously: 
negative-negative, negative-positive, positive-nega­
tive and positive-positive. Only the negative-nega­
tive and the negative-positive run-lengths are treated 
in this paper, since the other t wo run-lengths are 
the opposites to these two types and their properties 
can be analogously developed. 

Bivariate case with serially and mutually 
independent series . Consider a sequence of a two­
dimensional process (Xi' Yi)' i • 1,2, ... ,n, with 

two series mutually and serially independent, each 
having the same normal distribution. Given two levels 
of truncation , c l and c2' the four possible events 

can be transformed to a new random variable with 
values 0 or 1 as fo llows: 

P(Xi s c l Y. 
l ~ C2) P(Xi, 1 Y! 1) 

l 

P(Xi ~ c l Y. 
l 

> C2) ,. P(Xj_ = 1 Y! 
]. 

= 0) ' 
p (Xi > cl yi ~ C2) • P(Xj_ • 0 Y! 1) 

]. 

P(Xi > cl Y. 
l 

> C2) .. P(Xi 0 Y! 
l 

0) 

(2-41) 

Since X and Y are mutually i ndependent, the joint 
probabilities are the product of marginal probabil­
ities,' i.e., 

For the case of the negative-negative run-length, a 
new random variable is defined as Z = X'Y', which 
has a value of 1 only when X' = 1 and Y' = 1, other­
wise its values are zeros . The problem is reduced to 
obtaining the probability of the longest run-length of 
ones in n trials of the new random variable Z. The 
solutions of this case are given by Eqs. 2-15 and 2-19. 

Similarly, for the case of the negative-positive 
run-length, a new random variable is defined as 
v =X ' (1-Y ' ) , which has a value of 1 only for X' = 
1 and Y' = 0, otherwise its value is zero. The 
problem of obtaining the probability of the longest 
negative-positive r un- l ength in n trials of a 
bivariate process (X., Y.), whose series are mutually 

1 l 
and serial ly independent, is reduced to the problem 
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of obtaining the longest run-length of ones in n 
trials of the random variable V. 

Instead of a transformation to the univariate 
process with only two outcomes, an alternative for the 
case of two series serial ly and mutually independent 
is to make the transformation to the univariate pro­
cess with four outcomes and obtaining the expressions 
for the longest run-length of one kind followi ng the 
developments of David and Barton {1962). Consider a 
series of n trials, with r. of the i-th kind of a 

14 
total of four kinds so th t L r. = n. David and 

i=l 1 

Barton (1962) give a solution for the pr obability of 
the longest run-length irrespective of its kind in a 
similar manner to obtaini ng the probability of the 
longest run of one color i n a collection of balls of 
t wo colors. Consider a linear array of ri trials 

split into ti groups , none larger than g, for i = 

1,2 ,3,4, with al l arrangements of the ti groups of 

the different kinds, so that no two groups of like 
tXPe are adjacent . Denoting this number by C(t

1
, t 2 , 

t
3
,t

4
), it is clear that of the r!/r

1
! r

3
! r

4
1 possi­

ble arrangements of all the possibl e trials, the num­
ber of arrangements with no run longer than g is 

with the summation being over a ll 

recognized that C(t1 ,t2 ,t~ ,t4) is 

(2-42) 

t.'s. Itcanbe 
l 

the coefficient of 
tl t2 t3 t4 .) 

x1 x2 x3 x4 in the expansion of the expres-

sion 

1 
4 X. 

j r 1 - l+x. ' i•l l 

(2-43) 

so that the distribution is theoret ically obtained. 
It should be noted a l so that G(r . ,t.,g) is the coef-

ti l l 

ficien t of x in the expansion of 

2 t. 
(x + x + • • •• • + xg) 1 

, 

and that 

Gg(r 1,r2,r3,r4) 

r! 
P [ l ongest run of 

either kind s g 

(2-44) 

R~=r1 ,R~=r2,l · 
R3- r 3 ,R4- r4 

(2-45) 

An alternative to the computation of the C 
function is to consider that G(r. ,t. ,g0) is the coef-

r · t. 1 1 
ficient of Z 1 in [Gg(Zi)) 1 and Gg(r1,r2,r3,r4) 

is the coefficient of 
expansion of 

4 

L 
i=l 

in th.e 

(2-46) 



David and Barton report that it is easier to evaluate 
the c functions. 

To obtain the probability of the l ongest 
run-length of one kind, conq.itioned to "the knowledge 
of the total numbers of each of the four kinds, a 
linear array of the ri trials split into ti groups 

is considered, with ti not l arger than g for i : 

1,2,3,4. All arrangements of the ti groups of dif­

ferent kinds are obtained so that no two groups of 
like kind are adjacent . Denote this number by 
C(t

1
, t 2,t

3
,t4). It is clear that from all the possi-

ble r!/r
1

1 r 2 l r 3! r 4! arrangements of all trials, 

the number with no run longer than g is 
Gg (r

1
,r2,r

3
,r4), and is equal to 

4 

~. C(t1,t2,t3 ,t4)G(ri,t1,g) J~i G(ri,ti,ri). 
l 

With the same definition of G(ri,t
1
,g) as in Eq. 2-42 

then 

P[ longest run of al Rl=r l,R2=rz·] 
given kind s g R3=r3,R4• r 4 • 

Gg(r 1 , r 2,r3,r4) 

rl 
r

1
!r2!r

3
1r

4
1 

(2-47) 

This alternative has the disadvantage of difficult 
computations in comparison with the changing variable 
approach as showed earlier in this text. 

Bivariate case of two series serial ly independent 
but mutually dependent. Consider a sequence of the 
bivariate process (Xi,Yi) ' i • 1,2, .... ,n with the 

series mutuall y dependent but serially independent 
following the normal distribution. Given the two lev­
els of truncation, c1 and c

2
, there are four types of 

run-lengths, similar as earlier stated. Furthermore, 
since X and Y are mutually dependent, their joint 
probabilities follow a bivariate normal distribution 
and can be easily obtained. 

As before, the probability of the longest 
negative-negative run-length in n trials can be ob-

. tained by using a new random variable Z = X' Y' and 
determining the probability of the longest run com­
posed of 1 of the new random variable. Similarly, 
the probability of the longest negative-positive run­
length in n trials can be obtained by using the new 
random variable V = X' (1-Y ' ) , and determining the 
probability of the longest run of 1 of this new random 
variable. 

Bivariate case of two series serially dependent 
but mutually independent . . As for the case of both 
series serially and mutually independent, this case 
can be treated similarly with the only difference that 
the joint probabilities of X and Y, which are the 
product of the marginal probabilities 

take into account the serial dependence by means of 
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P(X. 1~c1 !X.<C1)P(X.sC1) l+ l- l 

and similarily for Yi. However, the use of a Markov 

chain instead of Markov models is an approximation, so 
that the solution for this case is an approximation to 
the true solution . The approximation is good for 
values of p ~ 0.4. The probabilities of the longest 
negative-negative run-length, and the longest nega­
tive-positive run-length in n trials are obtained by 
using the transformed random variable, Z = X' Y' and 
V =X' (1-Y'), respectively. 

Bivariate case for two series serially and 
mutually dependent. The analytical treatment of this 
case is more complex than for the other three cases. 
An approximate solution for simple cases is presented 
here. 

Consider a sequence of a bivariate process 
(X. ,Y.), i = 1,2, ... ,n, whose series are mutually and 

l l 

'serially dependent, each normally distributed. Given 
the two levels of truncation, cl and c2. the four 

types of run-lengths can be investigated by using the 
approximation through a four-state Markov chain, and 
with the scheme of transition probabilities given in 
Table 2-1 for X. and Y. , or X! and Y! variables , 

l l 1 l respecti vely. 

To obtain the transition probabilities of the 
four-state ~tarlcov chain, knowledge is required of the 
first-order linear autoregressive models, with their 
parameters p1 and p2, respectively, and the corre-

lation coefficient p between X and Y, assuming 
the distribution of the independent stochastic compo­
nents are normal. 

Table 2-1 Scheme for Transition Probabilities of 
Four-State Markov Chains of Xi and Yi, 
or X! and Y!. 

l l 

xi •l ~c, xi•l sc, xi•l>Cl li+l >Cl 

or or or or 

X! • 1 >+I X' • 1 i+l x• ~o i+l x• • O 
1•1 

vi•l~c2 yi+l>C2 Y i•l ~cz \.l•cz 

or or .,r or 
y• • 1 
i•l 

y • •0 
i•l vr.l· 1 y• •0 

1•1 

x
1 
sc

1 vi~c2 

or 0:" al a2 al "'• x;•1 Yi•l 

xi~cl Y1>C2 

or or bl bz bl b·~ 
X.! ~l 

1 
v;•o 

Xi>Cl vi~c2 

or or cl cz cl c ... 
X! • O 

1 
Y{•l 

X1>Cl Y1>Cz 

or or 41 d2 dl d~ 
Xi•O I Yt•O 

I 



The feasibil ity of using the trans for med r andom 
variables, Z = X'Y' and V =X ' (1- Y' ) , requires {1) 
t hat t he mar ginal distribut i ons of X and Y be 
~1arkov chains , and (2) t hat t he t ransformed r andom 
varia.bl es are also ~1arkov chains . Once these require­
ment s are sati sfi ed, it i s f easible to use t he uni­
var iat e approximat ion in det ermining t he pr obabi lities 
of longest run-length for series serial l y and mutually 
dependent . The above requi r ements can be i nvest i gat ed 
us ing the theor y on ~1arkov chain l umpab i l ity devel oped 
by Kemeny and Snel l (1960) . A l umped process is de­
fined as the process which can be r educed from a pro­
cess wi th a l arge number of states to a process wi t h a 
small number of s t ates . The disadvant age is that 
lumpability condi t ions are very r estrictive and could 
be applied only i n a few cases. 

Gi ven an r- s t at es Markov chain wit h trans1t1on 
matr i x P, let A= (A1 ,A2, . . . ,At) be a partition of 

repre-t he set of stat es. Also l e t p t p iA · l. ik 
J k£Aj 

sent •he pr obability of moving from state s. into 
1 

set A. in one s t ep for the or iginal ~larkov chain. 
J 

Then, a necessary and sufficient condition for a 
Mar kov chain to be lumpable with respect t o a parti­
t ion A= (A1,A2 , , . .. ,As) i s t hat for every pair of 

sets Ai and Aj , pkAj must have t he .same value for 

every sk i n Ai. 

For a ~larkov chai n t o be lumpable and t o obtai n 
t he l umped trans1t1on matrix , t he f ollowi ng procedure 
may be fo llowed. Assume that t he original Markov 
chai n with transition mat r i x P has r states, while 
t he desired l umped chain has s s t ates , with s < r . 
Let U be a s x r matrix whose i-t h r ow is t he 
probability vector having equal components for sta t es 
in Ai, and 0 for the remaining states. Also let v 
be a r x s matr ix 1d th the j-th column a vector "'' i th 
val ue unit y i n t he component s corresponding t o states 
in Aj and 0 otherwise. l f the Markov chain with 

t ransition matr i x P is l umpabl e with- r espect to the 
partit ion A, then t he following condition needs to be 
satisfied (Kemeny and Snel l, 1960) 

VUPV = PV . (2- t18) 

The lumped transition mat r i x is given by 

P = UPV (2- 49) 

For the case of investigating the l umpabil ity 
condi t ions for t he process X of Table 2-1, t hen 

1 0 

1 0 

0 

0 

a l a2 a 3 a4 

bl b2 b3 b4 

cl c2 c3 c4 

dl d2 03 d4 

1 0 

1 0 

0 1 

0 1 

al a2 a3 a4 

bl b2 b3 b4 

cl c2 c3 c4 

dl d2 d3 d4 

0 

0 

0 1 

0 1 

(2-50) 
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For X to be Narkov chain, the four- state Markov 
chain must satisfy t he four conditions: 

(2- 51) 

Similar l y, for Y of Table 2-1 to be a Markov chai n, 
t he four-stat e ~1arkov chain must sat isfy t he four con­
dit ions : 

(2- 52 ) 

For the transformed random variable Z = X'Y' 
to be a Mar kov chain, t he four-stat e Markov chain must 
satisfy 

Simi l ar ly, for the transfor med random var iable V = 
X' (1-Y' ) the condit i ons ar e 

Another way of approaching t he problem of a 
sequence of a bivariate process {X

1
Yui), i = 1,~, .

1
• , n, 

for t he two series mutual ly and serial l y dependent, is 
by considering the mar ginal distribut i ons of each pro­
cess . For the process X, t he correspondi ng Narkov 
chai n has t he s cheme of transition pr obabil ities given 
in Table 2-2. 

Tabl e 2-2 Scheme of Transition Probabi l ities of 
~larkov Chain for t he Process X .. 

l 

\.lscl, or X! =1 :t+l \+ l>Cl, or X! =0 l+ l 

xisc1 , or X!=l 
1 Pu plO 

Xi >Cl ' or X! =(J 
1 Pol Poo 

For t he process Y, the corresponding scheme of 
transit ion probabllit ies of the Markov chain ar e given 
in Table 2- 3 . 

Table 2-3 Scheme of Transition Probabi lities of 
Mar kov Chain fo r the Process Y .. 

1 

Y i+l~cz . or y ! =1 
1+1 yi+l>C2 ' or Y ! =~ 

1 + 1 I 

\~c2 , or Y:=l qll qlO 1 
I 

Yi>C2, or Y!=Oj qOl qoo i l I 

Furthermore, the joint probabilities can be obtained 
either by using a table of bivariate nor mal di s t r ibu-
tion or by integrat i on as 

P(Xi>C1 Yi>C2) " p (X! = l 
0 Y' 1 0) Poo 

P[Xi>C1 \~C2) :: P(X ~ 0 yr 1) POl 1 1 
(2 -55) 

P[Xi::c1 Yi>C2) P(Xi_ y r 
l 0) " PlO 

P[Xi§l \~C2) P[Xi l Y! 
1 

l] pll 



The matrices of transition probabilities for 
Yi are obtained by ~eans of 

j] 
P[Xi+l = k,Xi = j] 

PfXi = j] 

X. 
l 

and 

(2-56) 

To obtain the probability of the longest negative­
negative run-length in n trials in this bivariate 
process, the new random variable Z = X'Y' is ex­
pecte·d to be also a Markov chain , with the scheme of 

Table 2-5 

v. = 
1 

v. = l 

Scheme of Transition Probabilities for 
~1arkov Chain of the Process V. 

vi•l = 0 vi+l = 1 

0 Fl F2 

1 Gl G2 

transition probabilities given in Tabl e 2-4. and 

Table 2-4 Scheme of Transition Probabilities of 
Markov Chain for the Process Z .. 

1 

2i•I = 0 2i +l = 1 

z. 
1 

= 0 Al A2 

z. = 1 Bl B2 1 

The transition probabilities are obtained as 

0] = 1-P(Zi+l = liZi =OJ 

P(Z. 1=1) - P(Z. 
1

=1,2 .=1) 
1- 1 + 1+ 1 

1-PfZ.=lJ 
. 1 

1-P(Z.=l]-P[Z. =1) + P(Z. 
1 l+l l +l liZ. =l) P(Z. =l] 

1 1 

1-P(Xi•l ,Yi•l)-P(Xi•i"l,Yi• l" ' ]•P(Xi+l•l,Yi•l•l,Xi• l,Yi•l) 

1-P(Xi=l, Yi• lJ 
(2-57) 

The four-variate joint probability of Eq. 2- 57 can be 
obtained by integrating the quadrivaria.te normal dis­
tribution for the parameters of the underlying model. 
Then A2 = 1 - A1. The probability B1 can be ob-

tained similarly by 

P(Xl+l = 1, Yl+l = 1, X{ = 1, Yl • 1] 
81 • 1 - • (2-58) 

P(Xl • 1, Y{ • 1] 

with B2 = 1- B1. 

With the transition probabil ities of Z 
determined, the probability of the longest negative­
negative run-len~th in n trial5 can be obtained bv 
using these transition probabilities and the expres­
sions developed for the univariate dependent case , 
Eqs . 2-35 and 2-37. 

ro obtain the probability of the longest 
negative-positive r un-length in n trials, the new 
random variable V = X'{l-Y') is expecte~ also to be 
also a Markov chain. Its scheme of trans1tion prob­
abilities ar~ shown in Table 2-5. 

In a similar way to transition probabilities of 
Z, the transition probabilities of V are obtained as 

(2-59) 
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(2- 60) 

With the transition probabil ities of V known, 
the probabilities of the longest negative-positive 
run-length in n trials are obtained by using these 
transition probabil ities and the expressions developed 
for the univariate dependent case, Eqs. 2-35 and 2-37. 

2-6 Integration of Quadrivariate Normal Distribution 

To integrate the quadrivariate normal di~tribution 
funct ion, as needed for Eqs. 2- 57 through 2-60, con­
sider a multivariate n-dimensional stationary, Gaussian 
process whose distribution is 

exp 1-} r ~ a . 0 .x kl ~ dx . 
j=l k=l J J j=l J 

(2-61) 

with al l components x1, x
2

, ... ,Xn having zero mean 

and unit variance, IRI the determinant of the correla­
tion matrix of these components, and ajk the e l e-

ments of the inverse of this correlation matrix. Re­
viewing the literature on integration of the multl­
variate normal function , presented by Saldarriag~ 
(1969, 1970), it was found that no explicit expression 
is available for the general solution of this integral. 
Solutions exist only fo r speci al cases. Saldarr iaga 
(1969, 1970) gave a solution fol lowing Kendall (1941) 
for the probability of run-length for an i nfinite pop­
ulation in the case of dependent univariate case. 

The tetrachoric series expansion , for · the 
trivariate case , is given by Kendall (1941). It was 
extended by this writer to the quadrivariate case 
under study. For simplicity, the following notation 
is used : t he first Xi in the fir st series is desig-

nated by 1, the second Xi+l in the first series is 

designated by 2, the first Yi in the second series 

by 3, and the second Yi+l in the second series by 4. 

Also whenever the i ntegration goes from the truncation 
level to infinity the index (+) will be given to the 
corresponding variable, and (-) for integration from 

to this level. The truncation levels are c
1 

and 

c2 , respectively. Since the underlying model is a bi­

variate first -order linear autoregressive model, the 
serial correlation coefficients are P

1
• and p

2
, 

respectively for series 1 and 2, and p is their 
cross correlation coefficient. Then · 

{2-62) 



~taking use of Sal darriaga ' s developments, thi s 
expression can be evaluated by using Hermite polyno­
mials 

"' 
f
2

(Cl) f
2

(t2) L A(p,i)II(H), (2-63) 
i=O 

in which 

i = t + m + n + p + q + r , 

and 

with 

+ i 1n t + m + n 

+ i2n • t + P + q 

Since the definition of the llermite polynomials 
applies only to r = 0,1,2, ... , its values are 

Ho (C i) 

Ill (Ci) C. 
1 

H2(Ci) c? -
1 

tt
3

(C
1

) = c~ -
1 

3C. 
1 

For the case of r = .-~1, 11_ 1 (Ci ) is defined by 

1-f'(Ci) 
H -1 (Ci) = f(Ci) 

(2-64) 

(2-65) 

(2-67) 

(2-68) 

(2-69) 

Equation 2-63 is an infinite series. However, in 
practical applications it is desirable to restrict 
the seri es to a few terms. A truncation of the series 
after i = 2 is used in this study, implying that 
terms of the third order and higher orders are negli­
gible. The error introduced by the polynomial trunca­
tion is negligible for small values of pi. 

After developments and simplifications, Eq . 2-63 
becomes 
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The transformations that are used later are 

P(l-,2•,3+,4+) P(2+,3+,4 +) P[l+,2+,3+,4+), (2-71) 

P(l+ ,2-,3•,4+j P[l.,3 + ,4·) P(l+ ,2• ,3• ,4+), (2- 72) 

• + - + 
P[l ,2 ,3 ,4 ) P[l+,2 + ,4 +) P(l•,2+,3+,4+), (2-73) 

P(l+,2+,3+,4- ) P(l+,2+,3+) - P[1+,2+,3+,4+), (2-74) 

and the necessary probabi.ities are obtained as dif­
ferences of probabilitie· of four trivariate cases and 
one quadrivariate case . rhe definite expressions are 
of the same length as Eq. 2-70 and ar e obtained in the 
same way. 

To obtain the probability of all four variables 
being negatives, the same procedure with the following 
changes is used, namely for 

(2-75) 
-oo -oo -oo -• 

by using the tetrachoric series expansion as , 

in which A(p,i) is the same term as defined by Eq. 
2-64 

(2-77) 

For this case, the negative Hermite polynomials are: 

- 1 (2-78) 

The truncation of the expansion of Eq. 2-76 is also 
made after i • 2, with the corresponding error in­
volved . With the above considerations, Eq. 2-76 be­
comes 

(2-79) 



Simil ar transformations to Eq. 2-71 through 2- 74 are 
used for the negative case, namely: 

~ - + -P(l ,2 ,3 ,4 ) 

The final expressions for Eqs. 2-80 through 2-83 arc 
similar to those of Eq. 2-79. 

To obtain P(l - ,2-,3+,4~). the procedure is 
similar as followed in previous cases , namel y 

.. 

• £
2

cc )f
2

cc2)} A(p,i)rrcCHc )IT(llc ),'· 
1=0 1 2 

in which A(p,i), ,c(H). ll(H) are defined above. 
After replacing terms and simplifying, 

(2-84) 

(2-85) 

- .. ... 
Similar expref.sions arc obtained for P(l ,2 , 3 .~ ), 
P(l•,z•,3-,4-), P(l+,2- ,3+,4-), P(l•,2-,3-,4•), and 

+ + -P(l ,2 ,3 , 4 ) . 

The sixteen expressions thus far developed for 
the joint probabilities were programmed for computa­
tion hy a digital computer, and the transition prob­
abili ties of Table 2-1 were computed . 

For testing the accuracy, the bivariate case is 
used, with the approximation avai lable i n the Hand­
book of ~1athematical Functions (Abr amowitz, 1955) for 
the bivariate standard normal distribution, namely 

.. 
L(C l ,c2,p) m Q{Cl }Q(C2) + L 

i =l 

zi cc
1

) zi cc
2

) 

i! 
i ' . (2- 86) 

in which 

zn (C) Z(x) = ~(-1- e-ltz). 
dx .fin 

Although Eq. 2-86 is an infinite series , for this test 
the series was truncated at i = 5 and the approxima­
tion ,;as compared with the values given in Tables for 
the bivariate normal distribution, finding the approx­
imation adequate. For the case of pi,Z > 0.4, 

should be greater than five. The bi variate case ob­
tained from expressions for the sixteen joint prob­
abilities were compared with bivariate case obt ained 
by the above approximation. It was found that the 
approximation presented for the quadrivariate normal 
case was good for each p

1
, p2 , and p l ess than 0.4. 

\"hen pi was greater than 0.4, it is noted that the 

row values of transition probabi l i ties do not add up 
t o unity. 

Therefore, t he approximations give t he 
probabilities in case of t he quadrivar iate normal dis-

• tribution, that are val id only for small values of p, 
p1 and p2. These resul ts may be used to evaluat e 
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results obtained by Eqs. 2-57 through 2-60 as well as 
to obtain the transition probabilities of Table 2-1, 
thus producing approximations for probabilities of the 
longest negative-negative and the longest negative­
positive run-length in n trials for the case of 
mutually and serially dependent series of the normal 
bivariate process. 

2- 7 Probabilities of Largest Run-Sums in a Sample 
o( Size n. 

The analytical treatment and necessary 
approximations for probabi l ities of the largest run­
sum in n trials are presented here in the general 
form . The case of the largest run-sum not exceeding a 
given value in n trials is more complex than for the 
case of l ongest run-length of a univar iate independent 
normal process . It is still more complex for il uni ­
variate uependcnt process. The run-sum case of the 
bivariate independent or dependent pr ocess i s expected 
to be a l so very compl ex. The probl em of probabilities 
of run-sum has not received ver y much att ention in 
stat istical l iterature . The problems of hydrologic 
droughts have stimulated this type of study recently. 
Because of various problems involved, t he simp l e case 
of univariate independent standard normal process is 
used first in studying here in the probability of 
largest run-sum in samples of given sizes. The first 
study of the run-sum seems to have been done by Downtlr, 
Siddiqqi and Yevjevich (1967) for the run-sum distri­
bution of ~~ infinite stationary and ergodic popula­
tion. 

The following random variables are of interest in 
hydrology for the case of a univariate process, as 
defined by ~illan and Yevjevich (1971) : 

L n 

s n 

Ln, s' 

the longest negative run-length in n 
trials, 

the largest negative run-sum in n trials , 

the negative run-length corresponding t~ 
the largest negative run- sum in n trials 
and, 

the negative run- sum corresponding to the 
longest negative r un-lengt h i n n trials, 
as well as, 



the r ati os S ,/L and S / L as measures of 
n, ... n n n,s 

drought severity. First, the largest negative run­
sum in n trial s is i nvest igated . 

For the case of the unr:dimensional case of 
i ndependent, identically distributed normal random 
variables, a truncation level is sel ected so that 

q = P(Xi~C ) = P(Xi=l) = F(C) , (2-87) 

and 

p = 1 - q = 1 - F (C) . 

A negative run-sum corresponding t o a negative 
run-length of size n is defined by 

(2-88) 

while the largest negative run-sum is 

s 
n 

max [max(S
1
), max(S

2
) , .•. ,max(Si)), (2-89) 

where max(S1 ) = sn,l in the above notation. 

The largest run-sum in n trials, Sn' is 

obtained f rom a
1 

negat ive runs of length l , a2 
negative runs of length 2, up to a

1 
negative runs of 

length 1, wher e 1 is the longest negative run -
i 

length in these n trials. Then E a. is the total 
i=l 1 

number of negative runs in n trials. The maximum or 
largest run-sum of each of the run- l engths , 
i = 1,2, ... ,1, is obtained and the maximum amongst 
them is the largest run-sum i n n trials. Let define 

P[x•~x] = F*(x) = F(C) - F(x) = l -~ for x~C 
i ~ F (C) F (C) ' ' (2 - 90) 

P(Xi~x] = F*(x) = 0, for x>C, (2- 91) 

,.,.here F*(x) is the t runcated normal cumulative dis­
tribution function of Xi. The following notation is 

adopted, following Do1.mer et al ., (1969): ~! * is the 
moment generating function of \; K* "' log M* i s the 

. cumulants generating function, and ~<;.is the r-th 

cumulant of X., so that 
l 

W(v) 
vX . 

E [e 1
) 

K* (v) 

c 
!. J dvxdF(x) , (2- 92) 
q_., 

\ vx 
log M*(v) = log L pxe · (2-93) 

X 

After repl acements and simplifications , Eq . 2-93 
becomes 

K*(v) \ vr IJ I - .!.( I vr IJ I )2 • ... 
L r! r 2 r--l r! r r =l 

r 
\ ~ K* . 
L r! r ' r=l 

(~ -94) 
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as the cumulants generating function. In particular, 
vr 

equating like powers of TT then 

oc* 
1 

IJ ' 
l 

E(X] 

K* ul 2 
Var(X] 2 2 - IJl = IJ2 ' 

and 

K! = 
.) 

IJ I -
3 

21J2 IJi • 2\.1 13 = IJ 
I 3 

(2-95) 

Since for this appr~ach knowledge of the 
distribution of the run-l ength is required and the 
distribution of the run- length corresponding t o the 
largest run -sum is not known, then only the distribu­
tion of the run-sum corresponding to the longest run­
l ength is looked for analyti call y . 

Let M(IJ,v) and ~<(u,v) be the JOlnt moments and 
cumulants generating function of t he longest negat i ve 
run-length in n trials, gd, and the corresponding 

run-sum, sn . ~ Since the joint moment generating 

function is defined for any two real numbers u and 
v by 

mG 
5 

(IJ,V) = E [e~Gn+vSn ) = E { [e~Gn] E [evSn/Gn]} , 
n' n 

(2-96) 

and making use of the expressions devel oped f or t he 
longest run- length in n trials earlier, Eqs. 2-12, 
2-15 and 2-17 , 

Since the moment generating function of the sum of 
independent random variables is equal to the product 
of their moment generating functions, then 

(2-98) 

or 

K* (v) 
(2- 99) 

and 

"G ,S (u , v) = log mG 5 (u , v). 
n n n ' n 

(2-100) 

The individual cumulant generating functions can be 
obt ained by 

"G S (IJ,O) ' 
n ' n 

(2-101) 

and 

KS (v) =KG 5 (O,v). 
n n' n 

(2- 102) 

The parameters of these distributions shoul d be 
obtainable by differentiating at the origin. However', 
because the joi nt moment generating function cannot be 
reduced to a simple and recognizabl e expression, they 
cannot be obtained easily. Faced with these difficul ­
ties, t he investigator can onl y use the exper imental 



method to obtain the required results. The purpose of 
the above development was to show that even in the 
case of run-sums in · n trials for a univariate inde­
pendent identically and normally distributed random 
variables is not simple. Therefore, the more complex 
cases of univariate dependent, and the two-dimensional 
independent and dependent cases, being still more com­
plex, do not yield themselves to easy analytical solu­
tions. The experimental statistical method seems the 
only alternative left at present, and it will be used 
in all these cases in the further text. 

2-8 Run-Length Distribut ions for Infinite Populat ions 
of Univariate Cases 

The runs of an infinite population are s tudied 
similarly as for the runs of given sample sizes. 

Univariate independent process. The distribution 
of run- l engths of a uni-dimensional sequence of inde­
pendent identically distributed normal variables is 
t he same as the distribution of the number of trials 
required to obtain the first success in a sequence of 
repeated independent Bernoulli trials in which the 
probability of success at each trial is a constant, p. 
This distribution follows the well known geometric 
probability function . Downer, Siddiqqi, and Yevjevich 
(1967) studied the distribution of the positive and 
negative run-lengths and applied it to the normal 
variabl e. They used the data generat ion method to 
check the analytical solutions developed for the inde­
pendent standard normal variabl e . For this distribu­
tion, the constant truncation level C of the sto­
chastic process Xi was replaced by its probability 

q = P[x
1 

s C), with p = 1-q = Pfxi > C]. (2-103) 

By this replacement the properties of run-length when 
expressed as function of the proba.bil i ty q become 
distribution free , or independent of the underlying 
distribution, F(x). Therefore, the probability dis­
tribution function of run- length becomes 

!i CJP(X
1 

s Cj + ~ P(X . > C, i 
j=l l 

l, ... . j; X .. 
J+l 

s c, i = l, ... ,k; xj•k+l > cjx1 > c]. 

or 

k-1 
P ( K• k ] • pq (2-104) 

with 
2 E[K] = 1/p, and Var(K) s q/p . 

Llamas (1968) studied the case of the standardized, 
one-parameter gamma independent random variable, with 
the probability distribution function 

X r a•1 r 
F(x) f -ra 

a(a+t,a) -a- t•a d 
r (a) e t (2-105) 

which, for the truncation level C • 0 , gives F(O) 
P(a,a) = p, where P(a,a) is the incomplete gamma 
function or 

I[r(et)] 
1 af -t a-1 

r(et) 
0 

e t dt . (2-106) 
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Gabriel and Neumann (1957), in studying the 
distribution of a weather cycle , investigated the dis­
tribution of the total run-length (the negative· run­
length plus the continuing positive run-length) by 
assuming that the negative run-length is independent 
of the positive run-length, and that both follo w the 
geometric distribution . For X representing a posi­
tive run-length and Y a negative run-length, each 
having the positive integer events as discrete random 
variables, their probabilities are 

P(X = k ) 

(2-107) 
P(Y " m] 

with p
1 

• q
1 

• p2 + q2 a l, and p
1 

1 p
2

, q
1 

1 q2, 

where p
1 

is the probability of a positive value to 

be followed by a positive value, p
2 

ity of a negative val ue fo l lowed by 
q

1 
represents the probability of a 

is the probabil-

a negative value, 
positive value to 

be followed by a negative value, and q
2 

the proba-

bility of a negative value to be followed by a posi-
tive value. Even though the run is not defined in 
the paper, it is easy to infer that the definition of 
runs given by Feller (1957) was used. Let Z repre­
sent the total run- length, equal to X + Y. Then its 
probability is 

2 n-2 
P(Z = n] = (n-1 )(1-p) p (2 -108) 

Univariate dependent process . For the univariate 
case with a dependent series, the distribution of the 
run-length has been obtained in two different ways. 
First, by approximating the dependent series of the 
first-order linear autoregressive model by the corre­
sponding Markov chain. Second, by using a truncation 
on the infinite series of the tetrachoric series ex­
pansion of the integral when the underlying process is 
normal. 

The first approach was used by Cox and ~Iiller 
(1965) giving the distribution of the recurrence time 
of state (0) in the two- state Markov chain, (0) and 
(1) , with the trans ition probabi l ity matrix 

xi•I 
.. 0 xi•l = 1 

X. = 0 
l 

1 - a a 

X. 
l 

= 1 6 1 - 6 

This distribution is equal to the run- length of state 
(I) plus unity, presented as 

k-2 P(K=k] = aB(l - 6) , for k ') --, .>,. ••• , 

and 

P(K=k] = 1 - et , for k = 1 . 

The mean recurrence time of state (0) is 

!: (K] • et;B . 

(2-109) 

(2-110) 

(2-1 11.) 

Heiny (1970) defines the transition probabilities of 
two states as 

P(X. >Cj X. 
1

>C] 
l l-

r, 

,, 

I 



and 

P(X. :> C!X. l > C] = s , 
~ 1-

with r + s = 1. With the Markov chain approximation 
to the first-order linear autoregressive model, prob­
abilities, the expected value and the variance are 

and 

P[K=k] = srk-l[l + 0 

E( KJ. = i [1 + 0 

2 
(p ) 1' 

2 
(p ) 1' 

k = 1 , 2, . . . ' 

r 2 Var [K] = :2 [1 + 0 (p )], 
s 

(2-112) 

(2-113) 

(2-114) 

with O(p
2) the error term becoming negligible for 

small values of p. 

The second approach in considering the first-order 
linear autoregressive model is studied by Sal darriaga 
(1969, 1970) . For this type of univariate dependent 
process, the development of the distri bution of run­
length requires the joint probability distribution of 
variables x1, x

2
, . . . , assumed by Saldarriaga to be 

multivariate norfilal. For example, to find the prob­
abil ity of the negative run-length J- it is neces­
sary to integrate 

and 

P[K ? k] P[J-] + L P(k+, J-] 
k=l 

with dF given by Eq. 2- 61. The general solution of 
the multivariate normal integral is not available, 
except through the tetrachoric series expansion, given 
by Kendall (1941), for finding the approximations to 
exact solutions. The use of the experimental statis­
tical (Monte Carlo) method permitted to check the 
above approximations, which were presented by 
Saldarriaga (1969, 1970) in the form of graphs and 
tables . 

2- 9 Run-Length Distributions for Infinite Populations 
for the Bivariate Case 

Similar as for the bivariate case of the 
probability distribution of the longest run- length for 
a given sample size , the same four alternatives are 
investigated for the probabil ity distribution of the 
run-length of infinite series for the bivariate case: 
(1) series are serial ly and mutually independent, 
(2) series are serially independent but mutually de­
pendent, (3) series are serially dependent but mutu­
ally independent, and (4) series are both serially and 
mutually dependent. Similarly as f or the longest run­
length, only the negative-negative and the negative­
positive run-lengths are treated in this paper. Also 
the bivariate case is reduced to a univariate case by 
using the transformed variables. 

Two series serial l y and mutual l y independent. 
The case of two series being serially and mutually 
indeRendent can be treated by transforming the origi­
nal variables to random variables with 0,1 events , 
which. corresponds to P(X ' = 1) a P(X 5 C) and 
P(X' = O) = P(X >C) , and similarly for Yi. Let con-

sider a sequence of a bivariate process, (Xi,Yi)' i = 
1, 2, . . ·\• with the two variables having the same 
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distribution and being serially and mutually 
independent. For levels of truncation C

1 
and C

2
, 

four runs are NN, NP, PN, and PP. The joint prob­
abilities are the product of marginal probabilities. 

The distribution of negative-negative run-length 
can be obtained by means of a transformation to a new 
random variable Z = X'Y', with Z = 1 only when 
X' = 1 and Y' = 1; otherwise it is zero. The dis: 
tribution of Z is: 

which is the Bernoulli d. stribution with p
1 

= FX(C1) 

and p2 = FyCC2). The probability distribution of the 

run-length is a geometric distribution 

with 

E[K] (2-117) 

The negative-positive run-length distribution can 
be studied similarly . A new random variable V 
X'(l-Y') is such that V = 1 only when X' = 1 and 
Y' = 0; otherwise it is zero. Its distribution is 

. v = 0 Qr 1, (2-118) 

which is the Bernoulli distribution. The probability 
distribution of negative-positive run-length is the 
probability distribution of the run- length of V = 1 
and is 

k = 1,2, ... , (2-119) 

with 

E (K] 
p (1-p ) 

and Var[K] = 1 2 
2. (2- 120) 

[1-pl (l-p2) l 

Two series serially independent but mutually 
dependent. For t wo series serially independent but 
mutually dependent, a similar way may be used as for 
the independent case. Consider a sequence of a bi­
variate process (Xi,Yi)' i = 1,2, ... , with two vari-

ables of the same distribution but mutually dependent 
while serially independent . For the truncation levels 
c

1 
and c

2
, the four types of runs can be investi-

gated with the joint probabilities of X and Y 
given by the underlying bivariate distribution, say 
~he bivariate normal. As for the independent case, 
the probability of the negative-negative run-length is 
obtained from the variable Z = X'Y' by obtaining the 
probability distribution of the run- length of Z = 1 
of the new random variable Z, which distribution is 
geometric 

k 1,2, . . . ' (2-121) 



with F(X,Y) the standard bivariate normal . Similarly , 
the probability of the negative-positive run-length is 
obt ained from the v:iriable V, for V = 1. 

Two series serially dependent but mutually 
independent . For two series serially dependent but 
mutually independent, the analysis is simi l ar to the 
case of series seria lly and mutua l l y independent. 
This difference is that the joint probabilities must 
take i nto account the serial dependence in Xi and 

Yi. Probabilities of the negative-negative run-length 

and negat i ve-pos1t1ve run-length arc also obtained 
from the variables Z and V, respectively. These 
solutions are approximate onl y, since the ~1arkov chain 
is also an approximation to the first-o rder l inear 
autoregressive model. 

The approximat e integration may be used i n this 
l atter case by the tetrachoric series expans ion, with 
this approximate solution l ess accurate than i n the 
above approach. The negat ive-negative run-length has 
probabilities 

c c c c c 
f 1 f 1 .. . f 1 dF 1 • 

-00 -00 

? !2 t... dF2 ' 

(2-122) 

where dF is the multivariate normal integral of 
Eq . 2-61. Using the univariate dependent case given 
by Saldarriaga and Yevjevich (1970), probabil ities 
of negative-negative run-length are obtained by multi­
plying the marginal pr obabilities obt ained and given 
as tahles for a given parameter of dependence . Prob­
abilities of the negative- positive run-length ar e ob­
tained by the same procedure, because 

., ., ., 
f .. . f dF 
c

2 
c

2 
2 · (2- 123) 

Two series serially and mutually dependent. 
Analytical treatment is much more compl ex for two 
series mutually and serially dependent. Approximate 
analytical solutions are presented in t his paper. The 
degree of approximation can be determined by using the 
experimental method. 

Four different approximations are given: (1) by 
considering t he Markov chain lumpability, (2) by us i ng 
t he Markov chain approximat ions for the two processes , 
t hen determine the ~1arkov chains for the transformed 
variables; (3) by considering a four-state Markov 
chain, and (4) by approximate integrations using the 
tetrachoric series expansion . 

For the Markov chain l umpability approach, 
consider a sequence of a bivariate process (X1,Yi), 

i = l, 2, ... , with t1~0 series of t he same normal dis­
tribution , mutually and serially dependent. By con­
sidering the four-state ~1arkov chain o·f Table 2-1 , 
f i rs t t he Jumpabi l ity for t his chai n is i nvestigated 
both for the marginal distributions of X and Y, as 
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1;ell as for the transformed random variables Z and 
V. I f found lumpabl e into a two-state ~1arkov chain, 
it becomes feasible to find probabi l ity distribution 
functions of negative-negat ive and negative-positive 
run-lengths by using the variabl es Z and V, r espec­
tively. 

For the Markov chain approximations approach, the 
marginal distributions of X and Y are onl y consid­
ered, with their series dependence approxi mated by 
M11rkov chains , and transition probabi l ities as sche­
matical l y represented in Tables 2-2 and 2-3, and ob­
t ained for the Z vari abl e by Eqs . 2-57 and 2-58, 
which require the solutions of a quadrivariate normal 
distribution. By computing the transition probability 
matrix of Z, probabilities of negative-negative run­
length are obtained by using the equations devel oped 
for the univariate dependent case , Eqs . 2-109 and 
2-112. Similarly, probabil ities of negat ive-positive 
run- l ength arc obtained by using V, and Eqs . 2-109 
and 2-112, wi'th transition probabilities of Table 2-5 
comput ed by Eqs . 2-59 and 2-60. 

For the four-state ~1arkov chain approach, let 
consider t he four-stat e chain as represented by Table 

~ 2-l , obtained as approximations using the tetrachoric 
series expansion. 

The matrix of joint probabilities U is obtained 
either by i ntegrati on or from tables of a bivariate 
normal distribution, or from t he four - state ~1arkov 
chain Q, with 

!4+1 = Q.T U. 
- 1 

(2-124) 

The vector u of joint probabilities gives 

ui (1,1) P[\!C1, Y. ~ C2 ) 
1 

Ui(O,l) P[Xi>C1 
Y. s c2) 

l 

Ui( l,O) P(X . 
l 

s c
1

, Y. 
l 

> C2) , (2-125) 

ui co,o) P[\ > cl, Y. 
1 

> C2) . 

Probabilities of negative-negative run-length are 
schematical l y represented as 

at l east at l east 
one is zero one is zero 

They are obtained by considering all possible events 
by 

P[:-<NJ 

Simi larly probabilities of negative-positive 
run-length are represented by 



p[: 0 0 0 :1 
------t t 

k 
.· 

where the pairs shown with arrows can be (0,0) , (1,1), 
or (1,0). Probabilities are obtained by considering 
all possible events, as 

k-1 P(NP] • c
3 

(l-c
3

) (U(O,O) d
3 

+ U(l,O)b
3 

+ U(l , l) a
3

] . 

(2-127) 

For the tetrachoric series expansion approach , 
based on the fact that no explicit expression exists 
for the general solution of the multivariate normal 
i ntegral, the approximated solutions are obtained by 
using the tetrachoric series expansion. This case is 
simi lar to the solut ion given for the univariate case 
by Saldarriaga and Yevjevich (1970) . Probabilities of 
negative-negative run- length are obtai ned as follows . 
The neg~ti~e-negative run-length of k = 1 is equal 
to P(l ,3 ), in the nomenclature used for the quad­
rivariate normal integration. The negative-negative 
run- l ength of k • 2 is P(l- , 2- ,3- , 4-) . The nega­
t ive run-length k is obtained by generalizing Eqs. 
2-75 and 2-76 for the multivar iate normal case . 

Probabilities of negative-positive run -length are 
obtained in a similar way. For t~e ~ega•ive-positive 
run- l ength for k = 1 it is P(l ,3 ), for t he nega­
tive-positive run- length of k = 2 it is P(l-,2- ,3+, 
4+), as given by Eq. 2-85; for any negative-positive 
run-lengt h they can be obtained by generalizing Eq. 
2-84 . 

It should be stressed that in this approximation 
if a truncation in the tetrachoric series expansion 
after i • 2 is made this implies that the terms con-

ta1n1ng o3 or higher powers of p can be neglected. 
The error introduced, however, is small and can be 
assessed by using the- expei'imental statistical (~lonte 
·carlo) approach. 

2-10 Probability Distributions of Run-Sums of Infinite 
Series 

Uni variate case . It was sho~o.n in Section 2-7 that 
finding the distribut ions of l argest run-sums in a 
given sample is complex even for the simple case of 
univariate independent normal process. For r un-sums 
of infinite series the same difficulties are encoun­
tered as for the l argest run-sum of a sample. For the 
univariate independent normal process, Downer et al. 
(1967) give the exact properties of run-sums using the 
cumulants. Few first moments of the distribution of 
run-sums can also be obtained from the crossing theory. 
Llamas and Siddiqqi (1969) summarize the essentials of 
the above paper, some results reported in a strength­
ened for m, and some new results included. A truncated 
distribution was used for the negative run-sum, namely 

and 

with 

F
1 

(x) F(C) - F(C-x) 
F(C) 

F 1 (x) " 0 , 

if c ~ 0 

if c > 0 (2-128) 
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The probability density funct ion of run-sum for a 
more general case is given by Heiny (1968) in an ap­
proximate way using the two-paramet er gamma probabil­
ity density function and the associat ed Laguerre poly­
nomials. The t wo parameters of this gamma function 
are estimated by equating the first two moments of 
run-sum with the first two moments of t he gamma func­
tion, with 

e-z/2g z h/2-1 
Q(z;g;h) "' 

(2g)h/2 rc!!.l ' 
for ! > 0 ' 

2 

E[Z] • hg ' a~oJ Var[Z] .. 2g2 h . (2-129) 

where 

pic:;l +qK2 
and h 

2K l 
g 

2q.: 1 
---- (2 -130) 
P" 1 •q.: 2 

with p = F(C), q " 1-F(C) and K
1 

and .:2 the first 

two cumulates. If a greater accuracy is required the 
approximation can be i mproved, Siddiqqi (1960), by 
using the associated Laguerre polynomial s as shown by 
Heiny; however, no expl icit expr ession is obtained. 

For a univariate dependent process , it is more 
complex to obtain the exact distribution and param­
eters of the run-sum. Approximate expr essions for 
parameters arc obtained b~ lleiny (1968) as 

2 
+ !_ m + rm.>_)(l + O(p2)] 

s 2 

with r and s the same as in Eq. 2-112, and 

m2, and m
3 

the moments of the random variable 

whose density function is given by 

Gy (y.) 
i l 

yi > 0 
.. 0 elsewhere, 

and 

(2-131) 

(2- 132) 

The variance of the run -sum is given in approximate 
form also by Heiny as 

(2-133) 

Bivariate case . As shown in the preceding text, 
distributions of the run -sum are not simple to obtain 
as in the case of run- l ength , even fo r simpl e pro­
cesses . The bivariate case is expected to be even 
more complex than the univariate case . Similarly as 
for the run-lcng•h, four cases, N~. NP , PN , and PP, 
fo r each of the four bivariate cases should be inves­
tigated. Approximate expressions have been f ound for 
paramet ers of run -sum distri but ions for the serial l y 



and mutually independent, serially dependent but 
mutua lly independent, and serially independent but 
mutually dependent, but have not yet been investigated 
for mutually and ser ial ly dependent processes. Most 
of t he approximations were developed by Heiny (1968) 
for the univariate case. ljowever, the degrees of 
approximation are not shown since the experimental 
method was not used. 

The negative-negative run-sums are composed of 
the negative run-sum of each sequence over the common 
negative-negative run-length. The run-sums are not 
for the complete univariate runs. 

The case of mutually and serially independent 
components of bivariates , as analyzed by Llamas {1968) 
and Llamas and Siddiqqi (1969), has 

Var[s21) 

and 

p1p2E(Xj'] E[Yi] 
2 

{l-plp2) 

(2-134) 

(2-136) 

Llamas (1968) gives parameters of the standard normal 
variable with the truncation level of the population 
mean. 

The serially independent but mutually dependent 
bivariate case, studied by Llamas {1968) and Heiny 
(1968). according to Heiny has the following param­
eters of the distribution of positive run-sum 
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which and 

second cumulants 

P cxu > cl. x21 > 

1 
+- oc: 

q 2 

.!.). 
q 1 

, and 

(2-137) 

oc:2• and >.1 and >.2, the first and 

of Y11 and Y12 , respectively, p 

C2) , and (Y11, v12) a sequence of 

bivariate series with common density function given by 

G{x,y) 

and 

G (x, y) 

0 , if x ~ 0 and/or y s 0 

-F (,._X"'", y._.)'--·.._9 f • i p 
X > 0, y > 0. 

{2-139) 

Ll amas (1968) gives an approximation for the case 
where the truncation level in both components is the 

•median and the underlying distribution is standard 
normal. The degree of approximation was not deter­
mined. 

The case of serially independent but mutually 
dependent components, as discussed by Heiny (1969), is 
similar to the m:~ivariate case with the only modifica­
tion for the run- sum to take into account the differ­
ent run-sums of components. 

All above studies, however, consider only the 
cases of both runs being either negative or positive, 
with no attempt to study the positive-negative or 
negative-positive runs. The complexity in analytical 
developments were likely the major reason for the lack 
of studies in 1 i'terature related to the serially and 
mutually dependent bivariate case of run-sums. There­
fore, they will be investigated by the experimental 
method, similarly as it was done for the largest run­
sum in a sample of the given size. 



Chapter Ill 
E~PERIMENTAl APPROACH fOR STUDYING DROUGHT CHARACTERISTICS 

OF STATIONARY STOCHASTIC PROCESSES 
The data generation or experimental Monte Carlo 

method derives, in an approximate way , the drought 
frequencies as the estimates of drought probabilities 
of large r eturn periods by generating a given number 
of samples of data of given sizes. 

The analytical method derives the probability of 
any drought parameter by generalizing the properties 
of the avail able time series. When the mathematics 
involved become very complex, the analytical method 
may help in setting up the data generation approach 
and in the interpretation of its results. The data 
generation method requires univariate, bivariate, or 
multivariate generations of samples, in the latter two 
cases also for the case of mutually and serially de­
pendent components . The dependence used here is in 
the form of the first-order linear autoregressive mod­
el for al l dependent components of the bivariate or 
multivariate case, with the serial correlation coef­
ficients differing from one component to another. 

3-1 A Multivariate Generation Model 

Hydrologic variables, such as streamflow at 
different stations in a region, are both spat ial ly and 
serially correlated since they are affected by simi l ar 
climatic and hydrologic factors . The drought in a 
region depends highly on the level of water demand be­
sides depending on the avai l able water. 

Demand levels are not necessarily the same 
throughout a region. Furthermore , since historical 
records are short and consequently less reliable it is 
necessary to study droughts of long return periods on 
simulated records at each station by preserving both 
t he time structure and the interstation correlation of 
historical series . This requires the use of multi­
variate data generation approach . 

The parameters that are unbiased and have the 
lowest sampl ing variation are ones to be best pre­
served in the data generation method. Saldarriaga and 
Yevjevich (1970) show that the run-length properties 
of stationary processes are independent of their means 
and the standard deviations while being dependent on 
the probability q of the truncation level, the 
series dependence structure and the skewness of dis­
tribution . On the contrary, the run-sum properties 
depend on all above properties and in particular they 
are directly proportional to standard deviation of the 
process. Once the run-sum of the standardized vari­
able is known, the run-sum for any other o is ob­
tained by multiplying the run-sum of the standardized 
variable by this o . As a consequence, the generation 
of long samples of two series will be made each with 
the mean of zero , s tandard deviation of one, two trun­
cation levels q1 and q2, given sample size n, and 

the first-order autoregressive time dependence models 
for their serial correlation coefficients p1 (tx) and 

p
1 

(ty) and their lag-zero cross correlation coeffi­

cient p (tx,ty). The generated samples are then us·ed 

for the analysis of probabilities of runs covering the 
cases most likely to occur in practice. In the bi­
variate case considered, the two streamflow station 
series, generally cross correlated, are used. 

Multivariate time series analysis has been 
studied for some time, Quenouille (1957) . . Ho~<.·ever, 
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its use in hydrology for the purpose of generating new 
series may have been initiated by Fiering (1963), who 
treated both the bivariate and the multivariate model. 
The bivariate model was 

(3-1) 

with x and y 

deviations, p 
ficient, and x,y 

the means, sx and sy the standard 

the la g-zero cross correl ation coef-

( 3- 2) 

in which n is the cross correlation coefficient be­
tween ui and yi' expressed in function of the first 

serial correlation coefficient p1 (x) of X and ~he 

first serial correlation coefficient 
with n given by 

n = 

Y, 

(3-3) 

with v. a random normal deviate with zero mean and 
l 

unit variance . The means, variances, the respective 
serial correlation coefficients, and the lag-zero 
cross correlation coefficient between the two vari­
ables are preserved approximately through this model. 

Matalas (1967) gives a lag-one multivariat e 
Markov model which preserves the means, variances, the 
respective f i rst serial correlation coefficients and 
the lag-zero cross correlation coefficients, and if 
desired, the lag-one cross correlation coefficient s. 
The presented model is based on a multivari ate weakly 
stationary generating process, defined by 

!.i+l = ~ ~i + ~ ~-i+l (3- 4) 

with !.i+l ' ~ and ii+l being (m x l) matrices , the 

independent random components ~ mutually independent 
and independent of components \ and A and B the 

(m x m) matrices whose clements are defined in such a 
way as to preserve the desired statistics. In this 
case A is a diagonal matrix. Young and Pisano 
(1967) in a comment on paper by Matal as, and later on 
in a more detailed presentation (Young and Pisano, 
1968) , give an a l ternative method of solvi ng the B 
matrix by means of an orthogonalization or a recursive 
scheme , making it a simpler solution . Pegram and 
James (1973) present an extension of this model to the 
multi- lag case, specifical ly to the lag-two case, in 
order to preserve the means, the variances, the re­
spective lag-one and lag-two serial correlation coef­
ficients . The Young and Pisano model preserves only 
the first two moments . It means that residuals should 
be normal l y distributed, or transformed to become 
normally distributed (McGinnis and Sammons, 1970) . If 
it is not feasible to use such a transformation for 
any reason, a model is r equired for preserving th·e 

i ., 



third-order moments, such as the one given by Moreau 
(1970) , which preserves the skewness coefficients. 

Let consider an ensemble of the trend-free 
streamflow sampl es from a re •. gion as the X. . series, 

l,J 
with i the station number (i = 1,2, •.. ,m) and j 
the time sequence (j = 1,2, .. . ,n). The streamflow 
time series can be considered as composed of a deter­
ministic component (periodicity in parameters) and a 
dependent stochastic component, or 

X. . = 0
1 

+ o
2 

e:. . 
1,) 1,) 

(3-5) 

Periodicities in the mean and standard deviation are 
removed by 

e: . . 
1,) 

X. . - 0
1 1,) 

(3-6) 

The linear models for the stationary time series are 
studied by using correlograms or spectra. For monthly 
runoff, with the periodicity in parameters removed, it 
has been found that a first- or a second-order linear­
autoregressive model often fit well the time series 
dependence of the stochastic component (Roesner and 
Yevjevich, 1967) . For annual time series used in this 
study, the first-order linear autoregressive model was 
often used (Yevjevich , 1964) as a good approximation 
to time dependence. Therefore, the first-order model 
as a first, basic approximation is exclusively used in 
this study. To simplify t he analysis, stochastic com­
ponents are standardized. The e:. . variable is con-

1 , )' 
sidered normally distributed with the mean zero and 
variance unity. In case e:. _ is not normally dis-

1,J 
tributed, transformations such as logarithmic, square 
root, cubic root , or others are made to approach a 
normal distribution as closely as feasible. The 
multivariate case of the model is then 

(3-7) 

with j the time, A and B the (m x m) diagonal 
matrices, (. an (m- x 1) matrix of independent compo­

"'J 
nents following the standard normal distribution, and 

E(£) = 0; E(~) = 0; Var(£) = 1; Var (£) = l. (3-8) 

Calling 
then 

M 
0 

the lag-zero covariance matrix of ~ · 

T 
E(e:. e:.) = M 

J -) 0 

and M1 the lag-one covariance matrix, or 

T 
E(e:. 1 e:.) = Ml 

- J+ J 

(3- 9) 

(3-10) 

Taking the expectation of Eq. 3-7, the check is made 
whether the means are preserved . Multiplying the same 
equation by e:T and taking the expected values then 

- J 

T 
E(~+l ~} A 

By replacing 

Ml = AM - 0 

and multiplying Eq. 

. or A= M 
- 1 

3-7 by T 
£j+l, 

(3-11) 

~(1 
0 . (3-12) 

repl acing T of £j+l 

.. 
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the right hand side by its value of Eq. 3-7, and 
finally taking the expected value, then 

M A M AT + B (t T ) BT 
0 - 0 - - ~j + 1 ~j + 1 - (3-13) 

If ~ are considered to be mutually independent 
components as well as serially uncorrelated, then 
E(£j +l £j. 1l = I, the identity matrix, which means 

that the m x m matrix has each diagonal element 
equal to unity and all off-diagonal elements equal to 
zero, so that 

(3-14) 

Equations 3-12 and 3-14 define the coefficient s of 
matrices A and B. Equation 3-14 is straigh~forward 
to solve. - For the-bivariate case used in this study 
with components X and Y, 

['•('x) '••('x•'yl] Ml 
p 1 (e: • e: ) pl (e: ) 

- X y y 

['" 0 ] [ 

P(< ·' )] X y 
(3-15) 

0 a22 p(e:x,e:y) 1 

so that 

p 1 (e: • e: ) 
- X y pl(e: )p(e: , e: ) , 

X X y 
(3-16) 

pl(e:y) = a22' and P+l (e:x, e:y) = Pl(e:y) p(e:x,e:y), 

in which p1(tx) and p1 (e:Y) are the first serial 

correlation coefficients of the e: and e: ser ies, 
X y 

and p(t ,t ) and p 
1

(e: , e:) are the lag-zero and 
X y + X y 

lag-one 
e: and 

X 

cross correlati on coefficients between the 
e: series, respectively. y 

The term B ~- 1 consists of independent 
- -J+ 

stochastic components 
dent of e: and e: 

X y 

of the model, which are indepen­
but are mutually dependent . Re-

placing B ~- 1 by v. 
1

, with v . 
1 --J+ )+ ) + 

a (m x 1) ma-

trix, it becomes an independent stochastic component. 
Multiplying v. 

1 
by vT 

1 
and taking the expecta-

-J+ - J+ 
tion, the covariance matrix C of the stochastic 
serial ly independent component is obtained. Since 
this is a symmetric matrix, one solution is a lower 
triangular ma~rix, so that the solution for B can 
be obtained either by orthogonalization or recursive 
scheme technique, or by principal components tech­
nique. Then 

T T T 
E(~+l.v_ 1) =BE(( . l (. 1) B 

J -J+ - - J+ )+ -
(3-17) 

T 
with E(fj+l ij+l ) I. Since i are mutually inde-
pendent components, 

T 
E(v . 

1 
v. 

1
) 

- )+ - J+ (3-18) 

For the bivariate case, replacing B and BT by its 
matrices, Eq. 3-18 gives 



. · 
= [ Var(vl,j+l) Cov(vl,j+l' v2,j+lj 

Cov(v1 . 1 , v2 . 
1

) Var(v . ) ' ,J+ , J+ 2,)+1 
(3-19) 

which when solved, becomes 

(3-20) 

To obtain the relation between the cross correlation 
coefficient p(e , e ) the stochastic dependent compo-x y 
nents and th~ cross correlation coefficients p(O), 
between the stochastic independent components , the 
corresponding values are replaced in Eq. 3-14, or 

with 

p{e , e )(1- p
1

(e ) p
1

( e: )) 
X y X Y (3-22) 

• (3-23) 

and 

The advantage of making .use of correlation between the 
serially independent stochastic components is the 
statistical inference about the correlation coeffi­
cient . 

The parameters are now .p(O), p. (e: ) , and p . (e: ) , 
J X J y 

with the model preserving the means, the variances, 
the lag- zero cross correlation , and the respective 
serial correlation coefficients of normal variables. 
The lag-one cross correlation coefficient if insignif­
icant, as commonly found, need not be preserved. 
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Another advantage of the model presented is that in 
cases of no serial dependence, say for annual precipi­
tation series, pj(e:) and p.(e:) become zeros, with 

X ) y 
the model reduced to a simple form . 

3-2 Investigated Drought Characteristics 

The drought properties investigated in the case 
of stationary t i me series are of two kinds, runs sta­
tistics related to a given sample size, and runs of 
infinite series. The statistics of interest for runs 
of samples of a given size in this study are the 
longest run- length and the largest run- sum. The dis­
tribution of these random variables vary with the 
truncation levels c

1 
and c2 , the sample size, and 

the parameters of the underlying process as described 
in Section 3-1, of which p

1 
(e: ), p (e), and p(O) 

are the most significant. x 1 Y 

Runs of interest for infinite series are the 
run-length, the run-sum and the run-intensity. These 
random variables vary with the truncation levels c1 
apd c

2
, and the parameters of the underlying process, 

particularly p1 (ex), pl (e:y) and p(O) . 

For the bivariate case, the run- sum is defined as 
the sum of the partial run-sums, whether positive or 
negative . For the negative-negative run-sum it is 

k k 
s nn L (Cl - Xi) + L (C2 - Yi) . 

i=l i =l 
(3-25) 

Similar definitions hold 
(Snp)' positive-negative 

(S ) run-sums. pp 

for the negative-positive 
(S ) and positive-positive pn 

For infinite series, a joint distribution of 
run-length and run-sum may be obtained, and from it 
the properties of the run-sum may be derived. Chang­
ing parameters to consider are five: c1, c2, P1 (ex), 

pl (e:y)' and p(O), for standardized normal variables. 

Several combinations are selected for the use in ,gen­
eration method. For their selected numbers m1 
through m

5
, respectively, the total number of cases 

to be investigated is m
1
m2m3m4m5, which will be con­

sidered in computing the total number of samples to be 
generated. 

The truncation level of each series can be better 
expressed in the form of quantiles q, with q = 
P(XSC). Three values are selected for each of the two 
series in the bi variate case: q

1 
= 0.50, 0 . 35, 0.20, 

and q
2 

= 0.50 , 0 . 35, 0.20, respectively. The se­

lected values of serial correlation coefficients are: 
p
1 

(ex} = 0. 0 , 0.2, 0 . 4, and pl (ey) = 0.0, 0.2, 0.4 . 

The lag-zero cross correlation coefficients between 
the serially independent stochastic components are 
selected as: p{O) = 0.3, 0.5, 0. 7. The total number 
of combinati ons for all three correlati on coefficients 
is fifteen with twelve combinations resulting from 
p(o) = 0.3, 0.5, 0.7; p

1
(e:) = 0.2, 0.4, and p1 (e:) = 

X y • 
0. 2 , 0.4 , plus three combinations . resulting from 
p(O) = 0.3, 0.5, 0. 7; p1 (e:) = 0 and pl (e:y) = 0. The 

sample sizes selected are n = 25, 50, and 200. The 
value of 200 was chosen in order to consider an ex­
treme of large historical samples presently available. 



No consideration was given to eventual varying 
the skewness coefficient of the ~i components. This 

would increase the total number of cases and samples . 
The study by Millan and Yevjevich (1970) showed that 
the distribution of the lon~est run-length was only 
slightly affected by the skewness coefficient of uni­
variate asymmetrical dependent stochastic components, 
while the distribution of -the largest run-sum is much 
more affected by the skewness coefficient. In total , 
135 combinations of five parameters are selected for 
the study by the experimental (data generation) method, 
for deriving the distributions of runs for an infinite 
series, and 405 combinations for the di stributions of 
runs for the selected sample sizes. 

The selection of the number of samples to be 
generated was studied by Millan and Yevjevich (1970) 
for the longest run-length , considering the distribu­
tion of the sample mean run, mr ' which was said to be 

asymptotically normal based on the central limit theo­
rem. In this study, the number N of samples of a 
given size · n, to be generated i n such a way that the 
probability is at least 0.95 for the estimate mr to 

be within the tolerance limits ~r ± 0.2~r' is com­

puted to be 200. A total size of generat ed numbers 
is then Nn = 40,000 . For the case of runs of a given 
sample size n the number of bivariate samples is 
then m. = 40,000/n, or 

n 

II 200 

25 so 200 

N 1600 800 

Once Nn random numbers are generated for n • 200 , 
all numbers are used for the smaller values of n in 
order to allow an increase in the accuracy of esti­
mating distributions of runs. 

3-3 Algorithms Used for Computing Relative Frequency 
Distributions of Runs 

The procedure followed i n the experimental method 
is divided in three parts: (1) generation of bivari­
ate samples; (2) determinat ion of frequency distribu­
tions of selected runs for the bivariate case and 
infini t e series; and (3) determination of frequency 
distributions of selected runs for the bivariate case 
and given sample sizes . The distribution of runs of 
both kinds are obtained for all the combinations of 
selected parameters: c

1
, c2, p

1
(tx)' P

1
(Ey)' p(O), 

and n. 

For generating the bivariate samp]es the model 
presented in Section 3-1 is used, represented by 
Eq. 3- 7, expressed as 

<:I, j + 1 

£2 ,j+l = pl (ty)£2,j + p(O) I 1 - P~C~) f;l , j+l 

+ /1 - p~(Ex) I 1 - p~(ty) E;2,j+l 

(3-26) 
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with 

and 

P1(tx)' P1(ty)' and p(O) as defined earlier, 

~l . 1 and ; 2 . 1 the two independent series 
,J+ ,J+ 

of random numbers. The series of standard normal 
random numbers are generated directly, namely by 
transforming the uniform numbers into the normal ran­
dom numbers given in Box and Muller (1958), whose 
equations for a pair of standard normal random numbers 
~1 and E;2 are 

and (3-27) 

wher e Al and A2 are two consecutive independent 

random numbers which are uniformly distributed in the 
interval (0,1). 

The 80,000 random numbers required were 
generated by ·m·eans of Eq. 3-27 and used in Eq. 3- 26 
~for each of the ,lS combinations of pl ( <:x)' p

1 
(ty)' and 

p(O) . They weTe stored on magnetic tape. A tape of 
250 ,000 standaTd normal rando~numbers was used for 
the purpose. To obtain the distribution for selected 
runs of infinite series , a computer f low chart was 
prepared , Fig. 3-1 . To obtain the distribution for 
selected runs for the given sample sizes , a computer 
f low charge was also prepared, Fig. 3-2. 

Select parameters Pl (ex) • Pl (cy). p(O) • 

cl. and c2, and obtain truncated series. 

' Compute joint frequencies of the negative run-length 
and negative run-sum ior univariate cases. 

+ 
Compute joint frequencies of the negative-negative 
run-! ength, and the corresponding negative run-sum in 
one series and the correspon'ding negative run-sum in 
~he other series. 

l 
Compute joint frequencies of th.e negative-positive 
run-length, and the correspondi ng negative run-sum i n one 
series ~·d the correspondi ng positive run-sum in the other 
seTies. 

j_ 
Cotr.pute joint frequencies of the negativ~ intensity 
11 i n one series and the negative intensity 12 in t'he 

other series. 

J 
Compute joint frequencies of the negst ive intensity 
tl in one series and the positive intensity 12 in t'he 

other series. 

• Store dl joint frequencies on t ape. 

Fig. 3-1 Flow Chart of the Algorithm for the Analysis 
of Runs of Infinite Populations. 



Split the large generated bivariate sample in m sampl es •I 
each of the given size n 

.· ' Compute the first ser ial correlation coefficient of each 
series and the lap-zero cross correlation coefficient for 
each sample. 

' Transform each series for selected truncation levels to 
series of 0 and 1 values. 

~ 
Compute the frequencies of 0 and 1 for each series from 
the t otal sample. 

+ 
Compute for each series transition frequencies for the 
total generated sample of 0 and 1 values . 

+ 
Compute transition frequencies for the bivariate Markov 
chains of 0 and 1 series, which series correspond to 
the generated autoregressive mod~ls of the total sample 
size . 

t 
Compute frequencies of run-lengths of each kind (NN and 

for each of m bivariate samples and determine ~P) 
and store t he longest run-length of each kind for each 
of m samples of size n 

+ 
Compute the run-sums of each kind , for each bivariate 

definition of run-sum for the negative-sample with the 
negative case, s " 51 +52' and for the negative-positive 

case , S ,; S +S · 1 2' determine and stor e the largest run-

sum of each kind for each sample of size n , and 

' Det ermine frequency distributions of the longest run-
length and the l argest run-sum for NN and NP kinds of 
runs, fo r m samples analyzed. 

Fig. J-2 Flow Chart of the Algorithm for the Analysis 
of Runs for Given Sample Sizes. 
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Chapter IV 

ANALYSIS OF RESULTS O BTAINED BY THE EXPERIMENTAL METHOD 

Frequency distributions:of various runs , for both 
infinite series and samples of given sizes, obtained 
by the experimental method in generating a very large 
sample for drought variables of given characteristics, 
are fitted by the selected probability distribution 
functions. 

The results can be presented in two ways: 
(a) as graphs and/or tables of frequencies distribu­
tions, and (b) as estimated parameters of fitted prob­
ability distribution functions. The latter approach 
has the advantage of condensing the information, be­
cause two to four parameters are sufficient to define 
the probabilit y distribution functions . Furthermore, 
the estimated parameters of probability dist ribut ions 
of runs can be expressed in terms of parameters of 
underlying time series and their truncation levels . 
Because of these two particular advantages, the second 
approach is used only. 

Since distributions of run-l engths are discr et e, 
discrete probability functions are fitted to frequency·. 
distributions of run-lengths , while continuous prob­
ability distribution functions are fitted t o frequency 
distributions of run-sums. 

4-1 Fitting Discrete Probabilit y Distribution 
Functions to Frequency Distributions of 
Run-Lengths 

Ord (1972) and Johnson and Kotz (1969a) present a 
detail ed analysis of discrete distributions, with sys­
tems of discrete distributions defined by difference 
equations. This is analogous to the Pearson system of 
continuous distribution functions , defined by differ­
ential equations. The discrete system is based on the 
fact t hat for the hypergeometric distribution the 
ratio of the probabi l ity functions 
(Pj+l-Pj)/(Pj+l+Pj) is of the form: linear function 

of j divided by quadratic function of j , Ord 
(1967). The difference equation is 

and t he criterion is defined by 

2 
(bl-b2-l) 

I( • 
4b

2
(b

0
+a) · 

The alternative form of Eq. 4-1 is 

(a- r)Pr 

(4- 1) 

( 4-2) 

(4-3) 

with values of parameters expressed in terms of the 
first four moments, as given in Table 4-1, with 

2 
DP = 2(562-661-9), DG = 4~~ 3+2~2 (~+~ -3~2), 

a. = 
1 

\ 

and 
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For distributions with lower boundary at the or1g1n, 
the index of dispersion I is defined by Ord as 
I • ~2/~ ; another similar index is S = ~31~ . The 

system of distributions presented by Ord uses the 
criterion of Eq. 4. 2 for selecting distributions. 
Another method of distinguishing amongst distributions 
over the range (O, N) and (O , ~) is the (I,S)-plane, 
as shown in Fig. 4-1 . 

Table 4-1 Expressions for the Parameters of the 
Difference Eq. 4-1. 

Parameter 

a 

.. bo 

bl 

b2 

s 

Fig . 4-1 

Pearson Discrete with Range (O,N) 

-c~ 3tu2)(62+3)DP (l-2b2)u+l-b
1 

u2(462-361)/Dp 0 

2 
-a {~2-b 2 (3~2·~ -u)}/u 

(262-361-6)/Dp 
2 

{~(u3+~2)-2v2 }DG 

~ Negati ve Btnomio I 

Bet o Btnomiol 
(Right of the Ltne of 81nomiol ond 
Negoltve Binomtoll 

(I-S) - Diagram for Selecting Discr et e 
Probability Distribution Functions for 
Fitting Discrete Frequency Distributions of 
Run-Lengths. 

If none of the above discrete probability 
distribution functions fits well a frequency dis.tri­
bution, ~easured by the chi-square statistic, it is 
possible to use the list of discrete distributions 
given by Patil, Joshi and Rao (1968) for selecting 
the other discrete probability distributions 
functions. 

Other alternatives are: the polynomial expansion 
transformation (say, the Charl ier Type-B series), or 
the use of mixtures of distributions . The chi-square 
test of goodness of fit is used in t esting al l fits by 
various probability distribution functions. 

I 
i 
l. 
I 
! 

! 



4-2 Distributions of Run-Length of Infinite Series 

The case of dist~ibutions of run-length of 
infinite series for univariates were studied, and 
checked by the experimental method, by Downer, 
Siddiqqi and Yevjevich (1967) for the independent 
case, and by Saldarriaga and Yevjevich (1970) for the 
dependent case. The case of the bivariate independent 
case was studied by Llamas (1969) and Heiny (1968), 
with no experimental procedure used for the check. 
The bivariate case for mutually and serially correlat­
ed components is of the main concern in this paper . 
This section presents the general forms of run-length 
frequency distributions, with the fitted discrete 
probability distribution functions, and the regression 
relations of estimated parameters of fitted probabil­
ity distributions to the parameters of the two compo­
nent series. 

To assess how good are the results obtained by 
the experimental method, the cases of the fit of known 
exact probability distribution functions to computed 
frequency distributions of runs are used , also. This 
gives the level of confidence in the method applied, 
even for cases for which either the exact or approxi­
mate analytical results cannot be obtained . Since the 
exact probability distribut ions of run-lengths are 
known for simple cases of underlying processes, say 
for the bivariate case of serially independent but 
mutually dependent components, the comparison of 
results of the experimental method with the exact dis­
tribution gives measures of the deviates of fitted 
probability distributions from exact probability 
distributions. 

Exact distributions of negative-negative and 
negative-positive run-lengths are given in 
Section 2-6. A selected case is presented in Fig . 4-2 
for comparison of probabilities of negative-negative 
and negative-positive run-lengths of the bivariate 
case: serially independent but mutually dependent 
components, with p(O) = 0.7 and truncation levels 
c

1 
= 0.0000 and c2 =-0.38535. The experimental 

frequency distributions are obtained by ~s~ng t~e . 
algorithms given in Section 3-3. Probab1l1ty dlstrl­
butions, selected by criteria given in Section 4-1 for 
discrete distributions, are both negative binomial 
with the two paramet ers, p and r. The parameters 
are estimated by the method of moment s. The exact 
distributions are obtained by using the function given 
in Section 2-6, with joint bivariate normal probabili­
ties obtained from the normal distribution table. 
Visual inspection shows that the above three methods 
of computing or estimating probabilities of_run­
lengths are essentially identical for pract1cal pur­
poses. The chi-square test of goodness of fit, ap­
plied to compare the fitted probability distribution 
function to frequency distribution , gives the chi­
square value of 2.59 for the case of negative-negative 
run-length and the value of 5.71 for the case of nega­
tive-positive run-length. Both are smaller than the 
critical value for two degrees Qf freedom at the 
95 percent probability level of significance. 

Since the fitting of this probability 
distribution is acceptable , the same function is 
fitted in all 135 cases of combinations of five param­
eters. All the cases are anal yzed in using the Ord ' s 
approach , namely by finding whethe.r the negative 
binomial distribution is acceptable, 

(4-4) 
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a.. 0.4 0. 0.4 

0 . 3 0 .3 
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0. 1 
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Negotove- Nego:ove Run - Length Negoti"e- ?osotive 

Run-Leng th 

Fig. 4-2 Compar ison of Experimental Frequencies, 
Fitted Negat ive Binomial Distribution to the 
Experimental Frequencies, and the Exact Dis­
tribution for Negative-Negative and Nega­
tive-Positive Run-Lengths for the Bivariate 
Process of Serially Independent but Mutually 
Dependent Series with p(O) = 0.7 and 
Truncation Levels c1 = 0.0000 and 
c2 = -0.38535. 

with p x/s2 and r xp/(1-p). With parameters 
estimated, probabilities of equal class intervals of 
chi-square statistics, as expected frequencies, are 
then computed. 

The chi-squares are transformed into the 
corresponding probabil ities by using the chi-square 
cumulative distribution function 

(4-5) 

with v stands the number of degrees of freedom and 

x2, the upper integral limit • . the computed_chi-square. 
Probabilities of chi-squares 1nstead of ch1-squares 
themselves are used as comparable measures of goodness 
of fit of probability functions to observed frequency 

2 2 
distributions. Values of F[P(x )] for P(x ) = 95 
greater than SO percen~ we~e c~nsider~d acceptable_a: 
approximation to the d1str1but1on des1~e~. ~robablll­
ties of observed chi -squares are class1f1ed 1nto ten 
equal class intervals in this and subsequent sections 
of the paper, the class frequencies of results of . 
experimental method are determined, and the cumulat1ve 
relative class frequencies computed. Results for the 
negative-negative and the negative-positive run-length 
distributions are given in Figs. 4-3 and 4-4. For the 
95 percent level, 82.5 percent and_90.2 per~ent of 
computed chi-squares for the negat1ve-negat 1ve and the 
negative-positive run-length distributions, respec­
tively, were smaller than the critical chi-squares. 
It is concluded that the negative binomial distribu­
tion is adequate and an acceptable approximation of 
distributions of negative-negative and negative­
positive run-lengths for the serially and mutually 
dependent component s of a normal bivariate process, 
for the range of parameters and truncation levels 
investigated. 

Instead of presenting the two estimated 
P" and x of the fitted negative binomial 1 parameters 

j 

J 
i 

. • 
{ 
i 

f 
\ 

1 
•I 



distribution i n t ables, t he multiple r egr ession 
anal ysis is used to express these estimates in terms 
of parameters of the underlying bivariate process and 
t runcation levels. 

: 
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Fig. 4-3 Cumulative Distribution Curve F(P(x
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) ] of 
Probabi lities of Chi-Squares of the Nega-
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Fig. 4-4 Cumulative Distribut ion Curve F [P (/) ] of 
Probabi lities of Chi -Squar es of the ~ega-

tive-Positive Run-Length, P(x
2

) . 

The approac~ used in this analysis is to express the 
estimated parameters as two functions 

(4-6) 

and 

( 4-7) 

Stepwise multiple linear regression anal yses 1;ere 
performed , based on Eqs . 4-6 and 4-7 . The independent 
variab l es in t hese regression equations are the 
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selective paramet ers: c
1
,c2,P

1
(e:x),P

1
(\}, and p(O) . 

The dependent variabl es are the two parameters of the 
negati ve bi nomial distribution , symbolized here by u, 
expressed in t he linear form , as the first 
alternative: 

u =a+ b p
1 

(e:x) + cp
1

(e:Y) + d p(O) + e c
1 

+ f c
2

• 

(4-8) 

Table 4-2 gives the estimated regression coefficients, 
as a condensation of i nf ormation on estimated proba­
bility dist ribut ions of negative-negative and nega­
tive-positive run-lengths, for the range of parameters 
studied . The two parameters in the negative binomial 

Table 4-2 Estimated Regression Coefficients of 
Eq. 4- 8 for the Negative-Negative and 
Negative- Positive Run- Lengths. 

u a b c d • f 

Pnn . 79046 ·.21027 -.21798 • . ~ 1702 • . 16930 • . 1S896 

X 
rill 

. 33064 . :i89'54 . 39343 . 32733 .31736 . 31954 

Pnp . 70729 •• 309•26 •. 05499 . 2JS28 -. 20907 . 16244 

x 
np .40699 . 40253 .OS9S7 - . s;3oc . 3~~05 -.30!29 

R" 

. 9244 

. 9127 

.9451 

.9137 

dist ribution of Eq. 4-4 are p and r. However, the 
explained variances by the multi p le r egr essions ob­
tained for the parameter r were smal l er than for x. 

Similarly, the st epwise multiple linear 
regression analysis, based on Eqs. 4-6 and 4-7 , to 
determine whether the use of pr obabilities of quan­
tiles q

1 
and q2 as independent variabl es, and 

corresponding to the two truncation levels c
1 

and 

c
2 

t ogether wit h pl (e:x) , p
1

(e:y) , and p(O) would 

give a larger explai ned variance R
2 

than in the case 
of using c

1 
and c

2
. The dependent variables wer e 

again p and x, expressed i n the form 

u = a + b pl (ex) + cp1(e:y) + d p (O) + e q1 + f q2 . 

(4-9) 

Table 4-3 gives the estimated regression coefficients . 
Since the results ar e similar to those obt ained using 
the truncati on level s, on ly the quanti l es wil l be used 
i n the remaining part s of this paper. It should be 
stressed that the mul t ipl e nonlinear regression analy­
sis was al so investigat ed, resulting in t he l ower 

values of R2 than obt ained for the selected multiple 
l i near r egres si on . 

Table 4-3 Estimated Regression Coefficients of 
Eq . 4-9 for the Negative-Negative and 
Negative-Positive Run-Lengths . 

u a b e d • f 

Pnn 1.21820 - .21027 - . :1798 - . ~ 1 702 - . 47400 - . 38791 

' nn 
•. s 7004 • 38954 • 393~3 . 32733 .91963 . 8~756 

p"l' 
. 772$7 - . 30926 -. 0$~99 '23828 - . 58807 . 45602 

x np 
. 28646 . 40253 . 08~57 - . 35300 l. 08919 -. 84341 

R2 

. 9191 

. 9 194 

. 9459 

. 9168 



4-3 Distributions of Longest Run-Length in Samples 
of Given Sizes . 

The case of the longest run-length in the sample 
of si:ze n for the indepen<l;ent univariate process has 
been s tudied at length i n the past. The univariate 
dependent process was i nvestigated experimentally by 
Millan and Yevjevich (1971) and by Millan (1972). The 
probability distribution functions of the longest ne­
gative run-length in n observations, obtained by the 
experimental method , were fitted by a lognormal dis­
tribut ion function even though it was recognized that 
this statistic is a discrete random variable (only 
positive integers are random event s) . Distributions 
of the longest run-length of a given type in samples 
of a bivar i ate process have not been yet studied. Its 
analyt ical treatment either in an exact or in an ap­
proximate way, as stated in Chapter II, consists of 
four combinations of serial and mutual dependence of 
the t wo components. This section gives the general 
forms of frequency distributions of the negative­
negative and negative-posit ive longest run-length in 
samples of size n, fi tted but the approximat e proba­
bility distributions , and the multiple regression 
equations of estimated parameters of fi tted distribu­
tion functions i n terms of parameter s of assumed un­
derlying bivariate processes. 

Similarly as for the case of run-lengths for 
i nfinite series , the results of the experimental 
met hod were checked by using the case of the known 
probabil ity distribution function of the longest run­
length. The case used in the bivariate process of 
serially i ndependent but mutually corre lated series, 
with the exact results given i n Section 2-3 for both 
the longest negative -negative and the l·ongest nega­
tive-positive run-lengths in sampl es of si:ze n , 
p(O) = 0.7, P1 (Ex)= p

1
(cy) = 0.0, and c1 ~ c2 = 0. 0. 

The frequency distributions are obtained by using the 
algorithm given in Section 3-3 . Figure 4-5 gives the 
comparison of t he experimental frequencies , probabili­
ties of fitted function (mixture of geometric distri­
butions), and exact probabilities. 

The fit of discret e probability distributions is 
more complex for the negative-negative and negative­
positive longest r un-lengths i n case of samples than 
in case of inf i ni t e series. The analysis by using the 
family of discrete distributions , as given by Ord, 
inferred that the function should be of the Beta­
Pascal type . ll'hen its parameters were estimated by 
t he method of moments, square roots of negative num­
bers were obtained , making the fit impossible. The 
reason for this was that the values of S and I 
were near the boundary with the hypergeometic distr i ­
bution. The fit of hypergeometric distribut ion [Pat il 
and Joshi (1968) ], produced similar results. The 
attempt to use the series expansion approach of the 
Charlier Type B series , as given by Kendall (1943) , 
gave similar results as the binomial distribution 
which wer~ tried initially, wi th the chi-squares much 
greater than the critical chi -squares. The fit of 
discrete distributions of the Hyper-Poisson family , 
given by Bardwell and Crow (1964) , gave similar r e­
sults as the use of Charl ier Type B series with no 
reduction in probability of chi-squares. The method 
of moment s estimation of parameters was used for all 
the above distributions. A continuous distribution 
was also used with the understanding that it would be 
onl y an approximation to discrete distributions, and 
that probability densities multiplied by the unit-time 
interval around the integer values 1~ould represent the 
probabi lity mass at the integer value. Also , this 
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Fig. 4-5 Comparison of Experimental Frequencies , 
Probabilities of the Fitted Distribution 
Function (a mixture of two geometric distri­
butions) to Experimental Frequencies and 
Probabilities of Exact Distr ibution of the 
Negative-Negative and Negative-Positive 
Longest Run-Length in 25 Years for the 
Bivariate Process with Serially Independent 
but Mutually Dependant Component Ser ies with 
p(O) = 0.7 and Truncation Probabilities , 
ql = q2 = 0 . 0. 

approach failed to pass the chi-square test. A 
mixture of discrete distributions was then used. 

A visual inspection of experimentally obt ained 
frequency distributions suggest ed the use of a mix­
ture of two geometric distributions: left side with a 
truncated geometric distribution and right side with a 
standard geometric distribution . The discrete distri­
bution of this mixture is suggested to the writer by 
D. Boes in 1973, as 

(1-9 ) 9y-x 
~ Q _ _..:1;.__;1;..-

1 - erl 
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with 91 and e2 parameters of each part, 

respectively, y a location parameter and a a parti­
tion parameter. The estimation of these parameters is 
made by the maximum likelihood method . The location 
y is estimated either by the mode y = m or by 

y 
1 = m-1, a is estimated by a = r pi, 92 by 

i=l 
(x- ?)- l with 
than 1 + 1, and 

x the mean of observations greater 
e
1 

by an iterative solution of 

1 ? - xl cr+l)ei 
---= - --+ (4-11) 

- e el 
•'(+1 ' 1 1 1-61 

with x1 the mean of observations less than y , 

Exact distributions of Fig . 4-5 for the 
negative-negative and negative-positive longest run­
l ength, respectively, were obtained by using the dis­
tribution given in Section 2-3, with joint probabil­
ities of the bivariate obtained from tables of normal 
distribution and Eq. 2- 15 . 

Visual inspection of Fig. 4-5 shows the three 
compared distributions to be close for practical pur­
poses. The chi-square test of the goodness of fit of 
selected mixed distribution funct ion to fit the exper­
imental frequency distribution was used. For a sample 
size of 25, the chi-square was 6.34 for the longest 
negative-negative run-length, and 0.24 for the longest 
negative-positive run-length, both being smaller than 
the corresponding critical chi-squares of 7. 815 and 
3.841, respectively, for three and one degrees of 
freedom at the 95 percent significance l evel. 

Similarly as for the case of run-length of 
infinite series, the estimated parameters of fitted 
probability distributions are related to parameters of 
the underlying bivariate processes, instead of pre­
senting the graphs of experimental frequency distribu­
tions. For the 405 different combinations of basic 
parameters the samples were generated, the frequency 
distributions obtained and the mixture probability 
distribution functions fitted. 

The parameter y was estimated either by the 
mode m, as y = m, or by y = m-1 , whichever gave the 
smallest chi-square value. The other parameters were 
estimat ed as described previously, and probabilities 
as the expected frequencies are computed for the chi­
square t est. 

Similarly as for distributions of run-length of 
an infinite series, the computed chi-square values 
were t ransformed to their corresponding probabilit ies 
by using the chi-square cumulative distribut ion func­
t i on of Eq . 4-5 . Probabilities of observed chi­
squares are cl assified into ten equal c lass intervals, 
the corresponding observed class frequencies deter­
mined and the cumulative relative class frequencies 
computed. Results of probabilit ies of chi-square for 
distributions of the negative-negative and negative-

' positive longest run-length are shown in Figs . 4- 6 and 
4-7. At the 95 percent level, 68.3 percent and 
50 . 2 percent of the comput ed chi-squares for the 
longest negative-negative and negative-pQsitive run 
length were smaller than the critical values. The 
fitted distributions are accepted as adequate approxi­
mations for the experimentally derived frequency dis­
tributions of the negative-negati ve and ·negative­
positive longest r un-length in n years for a normal 
bivariat e process, in the range of parameters and 
truncations investigated. 

Following the method of previous analyses for 
runs of infinite series, parameters of the fitted 
probability distribut ion functions for the longest 
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of 

the 

of 

the 

run-length of given sample sizes are related by the 
multiple linear regression to parameters of underlying 
normal bivariate process, the truncation l evels and 
sample size, expressing the est imated parameters in 
the form of Eqs. 4-6 and 4-7. 

Stepwise multiple linear regression analyses were 
used, with independent variables being q1 and q2, 

the quantil e probabilities for truncation levels, 
p(O), the lag-zero cross correlation coefficient be­
tween the serially independent stochastic components , 
and the serial correlation coefficients P 1 (Ex) = 
p

1
(ty) = 0.0. Dependent variables were the estimated 

parameters of fitted distribution functions, symbol­
ized by u, in the form 

(4- 12) 

Tables 4-4 and 4-5 give the estimated regression 
coeff icients. The form of Eq. 4-12 was obtained after 
different trials with the multiple nonlinear 
regressions. 



\ 

Table 4-4 Estimated Regression Coefficients of 
Eq. 4-12 f9r the Negative-Negative Longest 
Run- Length in a Sample of Size n. 

r-- r-·---
Rt u & b c d .. e ~ I 

T -~ - 05151 .67364 .6ll92 .98148 2.96296 2.!3.951 l. 75236 .8233 

o/Y • 69835 - . 07551 •. 08227 - . 12509 - .31244 -.H332 ·-11~09 . 79C6 

'2 1.28471 -.23525 ·-2~875 -.21905 .52795 -.41152 -. 02546 .9030 

81/y .08726 .04108 .04209 •• 01139 - .00463 ·.OU92 -.02972 .2169 

Tabl e 4-5 Estimated Regression Coeffici ents of 

u a 

y • 74931 

o/y .50198 

e, • 32634 

~/Y . 10310 

Eq . 4-12 for the Negative-Positive Longest 
Run- Length i n a Sample of Size n. 

b c d • f ' 
Rz 

~ l851S .67S01 1.11111 -3.08642 3. 72840 1.42368 .8042 

•. 02325 . OSH6 .1J836 • 34381 -. ~4054 - .14312 • 7985 

•• 08529 -. 27~50 .20982 .56094 -. 74~94 -.03070 .93181 

. 00701 • 05416 .00925 -.01177 -.04440 -.03424 .1596 

4- 4 Fitti ng Cont inuous Probability Distribution 
Functions to Frequency Distributions of Run-Sums 
and Run-Intensities 

Run sums and run-intens1t1es are continuous 
random variables, so that continuous distribution 
functi ons must be fitted to their experimental fre­
quency distributions. In fitting probability func­
tions to experimental curves, two approaches are used 
i n this study: (1) Pear son family of distribution 
funct ions (Pearson, 1895), and (2) probability func ­
tions transformed by polynomials. The Pearson family 
of functions has been discussed by many author s, nota­
bly by Elderton (1953) , Elderton and Johnson (1969), 
Kendall and Stuart (1969) , Johnson and Katz (l969b) , 
etc., with detailed analyses available . 

The series expansion approach assumes that an 
arbitrary density function, h(x), can be represented 
by a series based on a known density function, say 
the normal dens ity function, in the form 

h(x) f(x) ~ C .. H. (x) , 
j =0 J J 

(4 - 13) 

with H. (x) polynomials of the order in x, and 
J 

C. the coefficients which depend on the type of poly­
) 

nomial i n Eq. 4-1 3. This approach is used for the 
joi nt distri bution of run-sums of i nfinite series . 

4-5 Distributions of Run-Sums and Run- Intensities of 
Infinite Series 

Distributions of run-sums of infinite series of 
independent univariate normal processes were studied 
analytically by Downer, Siddiqqi and Yevjevich (1967) 
and the result s checked experimentally. This case 
was also studied by Llamas (1968) for the independent 
gamma variables. Distributions of run-sums of uni­
variate dependent processes are obtained by Heiny 
(1970) in an approximate form . The bivariate process, 
with components mutually and serially independent, was 
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analyzed by Llamas (1968) and Llamas and Siddiqqi 
(1969) only for t he negative-negative run-sum. The 
serially independent but mutually dependent components 
of the bivariate process were analyzed by Llamas 
(1968) and Heiny (1970) onl y for t he negative-negative 
run- sum . . 

In this paper, the runs of bivariate norma l 
processes of mutually and serially dependent compo­
nents are investigated. Because the analytical treat­
ment is complex, experimental method is used to obtain 
frequency distributions for selected cases. Experi ­
mental result s are checked by using the properties of 
run- l ength, as explained in Section 4-3. Joint fre ­
quenci es of the corresponding run-lengths and run-sums 
of series 1 and 2 are obtained for the negative-nega­
tive and negative-posit ive cases. Distribut ions of 
the joint frequencies of run-sums and run- i ntensi ties, 
obtained experimentally, were fit ted by gamma func­
tions with Laguerre pol ynomials . 

Distribution functions of gamma type with 
Laguerre polynomials ar e used for the negative-nega­
tive and negat ive-positive run-sums . The reason is 
~hat the bivariate normal distribution was not givi ng 
an adequate fit, and the fits of the bivariate gamma 
distributions , given by Ord and Mardia (1970), were 
not acceptable. Marginal distributions fitted by the 
Pearson Type I II probability function did not pass the 
chi-square test of goodness of f it; however, the ob­
tained chi- square val ues were close to critical val ­
ues. After these attempts, the two-parameter gamma 
distribution function was used for the marginal dis­
tribut ions and the product of two gamma functions with 
Laguerre polynomials f or joint distributions . This 
approximation to joint probabi l ity density function 
with series expansion is 

f 1(x) f 2 (y) L ~ 
j k 

celx) 
with Lj ().1x) and 

Ce2y) 
Lk ().2y) the Laguerre poly-

nomials of degrees j 
Laguerre polynomial of 

and k , respectively . A 
degree m, L(c)(z) , is ex-

m 
pressed by expans i on in power series of z as 

L (c) (z) 
m 

m m m-1 
z - IT (m+c) z 

+ m(m- 1) (m+c) (m+z-l)zm-z __ .. 
21 

(4-15) 

For c > -1 , the polynomials L~c)(z), (m= 0,1,2, . .. ,), 

form an orthogonal system on t he semi -axis co . ~) . with 
the weight function f

1
(z) , 

(c ) 
j L. 1 (z)L(c)(z) f

1
(z) dz 

0 J m 

For 

s -z z e then 

d2 m! r (c+m+l) . 
m 

0, if 

d~. if 
J 

# m, 

m. 

(4-16) 

(4-17) 

(4-18) 



Coefficients a j k can be estimated by taking the 

expected value of 
as 

( B 
1
-1) (82-1) 

E(Lj (t.1x) Lk (:\ 2Y)] 

Ce
1
- ll Ce2-1J 

= f f L· (;~. 1x)Lk (;~, 2y) f(x,y)dxdy . 
0 0 J 

(4-19) 

Replacing fX , Y(x,y) by its value in Eq . 4-17, and 

considering that the postulated marginal distributions 
are 

(4-20) 

and 

e-"zY(t.2y)B2- 1 :\2 

f(Bzl 
(4-21) 

then Eq . 4-19 becomes 

Taking into account Eqs. 4-16 and 4-17, the expected 
value i s 

or 

Coeffi cients ajk are obtained for the selected 

values of j and k in Eq. 4-24. Using values 
j = k = 3, and simpl ifying Eq. 4-24, t hen 

_ E(Y) 
- var(Y) 

(4- 23) 

up to 
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1 :\3E[X3] 1 ).21E(X2) - _31 . 3 30 6i\(B
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1
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1
+1) 

(4-25) 

Nine par amet ers of probability distri but ions t o fit 
the joint frequency distributions of run-sums and run­
intensities are E(X), E(Y), E(X2), E(Y2), E(XY), 

E(X2Y), E(XY2), E (X3), E(Y3). 

Nine par ameters of joint distribut ions of 
negative-negative and negative-positive run-sums were 
computed for the 405 cases of experimentally gener­
ated l arge sampl es. They gave the expected frequen­
cies for the chi-square tests of goodness of fit of 
these functions. Computed chi-square values are 
transformed i nt o their corresponding probabilities by 
using Eq. 4-5. They ar e c lassified into t en equal 
class intervals with their c lass frequencies deter­
mi ned and the cumulative frequencies computed . Re­
sults for the ne gative-negative and negative-posi­
tive joint distributions of run-sums are presented in 
Figs. 4-8 and 4-9 . At the 95 percent l evel, 71.5 and 
72.3 percent of computed chi- squares were smaller than 
the critical values. The f its of gamma funct ions with 
Laguerre polynomials are accepted as satisfactory 
approximations . 

Stepwise mul tiple l inear regression analyses were 
made to express th.e estimated parameters of the joint 
probability dist ribution functions, as dependent vari­
ables, in terms of exact parameters of t he two series 
and the corresponding truncation level s, of the t ype 
of Eq. 4-8 . Independent variables were the same as in 
Section 4- 2. Tables 4-6 and 4-7 give the est i mated 
regression coefficients, which represent a condensa­
tion of information on sampling distributions of the 
joint negative-negative and negative-positive run­
sums , respectively. In these tables, 0

1 
and 02 

are the deficit in series 1 and 2, respecti vely, and 
s

2 
is t he surpl us i n series 2. Also the R2 values 

are given. 

For the case of joint distributions of 
run-intensi t ies the same approach i s used as for joint 
distributions of run-sums. Figures 4-8 and 4-9 show 
the cumulative r e l ative class f requencies of probabil ­
ities of obt ained chi- squares . At the 95 percent lev­
el, 77 . 3 and 79 . 4 percent of the computed chi-squares 
were smaller than the critical chi-squares. The fits 
of gamma functions with Laguerre pol ynomial s are ac­
cepted as satisfactory approximations. Stepwise mul­
tiple linear regression analyses were performed to 
obtain equat ions of the t ype of Eq. 4-8. Independent 
variables are the same as in Section 4-2, with depen­
dent variables being t he estimated parameters of these 
joint probability distribution functions . Tables 4-8 
and 4-9 give the estimated regression coefficients and 
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the R2 values. A comparison of results of the 
regression anal ysis of parameters of the distribution 
of t he joint negative-negative and negative-positive 
run-sums presented in Tables 4-6 and 4-7 with the re­
sult s of the regression analysis of parameters of the 
distribution of the negative-negative and negative­
positive run-intensities presented in Tables 4-8 and 

4-9 shows the higher values of R2 for the intensi­
ties than for the sums. This can be explained by the 
fact that the existing correlation between t he run­
length and its corresponding run-sum produces a small 
sampling variation in their ratios. 

4-6 Distributions of Largest Run-Sum in Samples of 
Given Sizes 

The case of distributions of run-.sums for given 
sample sizes , particularly the largest run-sum in n 
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Table 4-6 Estimated Regression Coefficients of 
Equation 4-9 for the Joint Distribution of 
the Negative-Negative Run-Sum. 

Paro::>etn ... b c d e t R2 

E(D1) - 0.13828 . 29217 • 32565 .47147 2.27276 .24389 .9541 

E(Di) - 3.45871 2 . 24692 1. 50811 2 . 08177 9.39387 2 . 13814 .8811 

E(D2) - 0.14848 . 33977 .28768 • 49921 .26572 2.28574 .9560 

E(D~) - 3 . 66554 1. 58701 2.23931 2 . 30118 2. 36588 9 . 52111 . 8834 

·--
E(D1D2) - 3.55407 I. 65397 1.60771 2. 21931 5.31621 5.2363~ .8519 

2 
E(D1D2) -21.47830 10.48213 8.00554 10.93330 30. 3S095 22.21412' .7396 

E(D1Di) ·21.91244 8. 44969 0.199H l. 33341 23.26341 30.01339 • 7319 

E(D~) ·23. 77062 11.43511 5.57942 7.521)94 46.67559 14.87146 .1796 

E(D~) -25.46707 12.99252 8. 21255 5.52531 16.93461 47.35485 . 7781 

~Table 4-7 Estimat ed Regression Coefficients of 
Equation 4-9 for the Joint Distribution of 
the Negative-Positive Run-Sum. 

Parameter a b c d • f R2 

E(D1) • 80961 • 21366 . 06127 •· . 75001 1. 51613 • • 79645 .9428 

ecoi> 1. 35259 1.16286 .15491 -2.28541 4.57479 - 2.66804 .8313 

E(52) 1. 66053 • 29840 . 06292 - 1.15574 1. 30632 • 1.92101 .9387 

' E(S;) 3. 98495 1.51274 . 47539 -4.02996 5.12212 • 6 .8804-4 . 8130 

E(D
1
S

2
) 1. 78577 1.14991 • 22799 ·2. !9Z63 3.98309 • 3.60603 . 7970 

i£cois:> 4 . 18571 5.20360 .61882 -7.70233 13. 97333 -ll. 73363 . 6358 

~(D1S~) 6.24975 s. 71521 1. 27931 -9.64958 15.92044 ·16.02572 .6313 

E(D:) 3. 77980 ·8. 66343 6.19092 . 32688 !7.05712 -10.96483 .6804 

E(S~) 13.82225 ·17. 25806 a. 25806 3.02832 4.16221 -30. 38S2i .6642 

years, was studied by ~lillan and Yevj evich (1970) for 
t he univariate processes by the experimental method. 
The analytical treatment in simple form seems not 
feasible. Distribution functions of the largest run­
sum of the independent and serially dependent uni­
variate nor mal processes, as obtained by Millan and 
Yevjevich, are fitted by the lognormal distribution 
function with the use of the Smirnov-Kolmogorov good­
ness-of-fit test. 

Distributions of the largest run- sum of a given 
type for given sample sizes of an independent bivar­
iate normal process have not been studied either ana­
lytically or experimental ly, because they are much 
more complex cases than the cases of the univariate 
normal process. The bivariate normal dependent pro­
cesses have not been studied either. This section 
shows only the general form of sampl ing distributions 
of the l argest negative-negative run-sum and the 
largest negative-positive run-sum in samples of size 
n. The fitted probabil ity distributions are obtained 
as gross approximations, and the multiple linear re­
gressions are given between t he estimated parameters 
for the bivariate case and the parameters of the 
underlying processes, similarly as it was done in pre.­
vious sections . 

Since no analytical exact distributions of the 
largest run-sum is available for checking purposes, 



Tabl e 4-8 Estimated Regression Coefficients of 
Equation 4-9 for the Joint Distribution of 
the Negat ive-Negative Run-Intensities. 

Paru:c:n: 4 b c d • f R2 .. 
E(: 1) .47401 .010~3 '!0113 .l ~ss.;. - . 36!Jo64 1.01882 ' 9527 

E{I;) . 38111 - . 02097 -.19865 • 2.595 - . 751.52 1.83578 .9370 

ECizl '46436 -. 09~20 • 00297 . 15288 1.01316 - . 36285 . 9547 

wi> . 38478 - . 19<02 -.03291 . 21926 l. 79156 - . 73459 .9368 

E (!1 12) .10585 -. 09072 -.10057 .35195 . 52130 . 52115 . 9609 

E{lii 2) - . 02215 -.15602 -. 20465 . 54794 .30227 1.18212 . 9653 

E{l11 ;1 -.01154 -' 19210 -.17135 • 52624 1.164 66 .30407 .9631 

E{lfl . 42313 . 37252 -.ooll3 -. 35952 - 1.36124 3.06647 .9219 

w;1 . 45223 '29816 -. 34514 - .10170 2 . 962!76 -1.32683 . 9210 

Table 4-9 Est imated Regression Coeffici ents of 
Equation 4-9 for the Joint Distribution of 
t he Negative-Positive Run-Intensities . 

Paramet:er • b c d • t R.2 

E(l
1

") 1.19141 - . 02739 -. 02169 - . 63241 .34307 - .91721 .9731 

' Wjl .61523 - .08231 -.03027 -1.09912 .49313 -1.53274 . 9574 

E(l2 ) • 57319 - '06822 • 00614 - • 37257 .60713 - .18799 .9690 

' E(lil .52111 - .12128 ·--·-- - '55067 .83410 - . 21583 .9611 

E(t 1I 2) . 64442 - . 05!33 -.00514 - .57154 .53718 - . 56824 .971~ 

E{lil2) .84367 - .07991 - .00784 - . 79648 .58710 - . 8~141 . 9428 

E(I1I~) .55261 - .07996 -. 01116 - .6161> .6253:0 - .48747 . 9516 

E(l~) .42237 -1.80594 -.17756 - .03915 ' 70077 -2.45258 .9389 

E(l~) . 60J76 - • 79708 - .20022 - . 01025 1.14461 - .25024 .9492 

t he r ·esul ts must rely on the check Hith t he longest 
run-length of the same series . 

The Pearson family of di stribution functions was 
used, with the availabl e criteria for identifying its 
type of the best fit to frequency distributions ob­
t ained by the experimental method . The parameters of 
these functions were estimated by t he method of mo­
ments, as a characteristic of the Pearson approach . 
The chi-square test of goodness-of-fit was used with 
the 95 percent significance level. Tables 4-10 and 
4-11 sho1~ the number of cases fitted by Pearson Type 
VI, I, and IV distribution functi ons . The total num­
ber of simulated cases is 405. 

Table 4- 10 Pearson Type VI, I and IV Probability 
Distribution Functions Fitted to the 
Experimental Frequency Distribut ions of 
Negat ive-Negative Lar gest Run-Sums. 

~· Funct ~;:;e 25 50 200 Total 
type n 

VI 80 45 29 154 

l so 88 103 241 

IV 5 2 3 10 

405 
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Table 4-11 Number of Cases Fitted by Pearson Type VI, 
I, and IV Probability Distribution Func­
tions Fitted to t he Empirical Frequency 
Distri butions of Negative-Positive Largest 
Run-Sums . 

~· Funct ize 25 so 200 Total 
type n 

VI 1 23 59 83 
I - 2 39 41 

IV 134 110 37 281 

405 

To have t he same distribution for different 
sample sizes , Type IV was chosen for the negative­
positive largest run-sum, by having 281 cases of good 
fit out of 405 cases , or 69.38 percent. Similarl y, 
Type I was chosen for the negative-negative largest 
run-sum , by having 241 cases of good fit out of 405 
cases or 59 . 50 percent. 

The Pearson Type IV distribution function, with 
t he origin at the mean, is 

(4-26) 

with y
0

, a, v 

parameters were 
The parameters 

and r the parameters. These 

est i mated by the method of moments. 
a1 and 82 are defined by the sec-

ond, third and fourth moments about the mean, as 

2 
\12 
3 
).13 

, and (4-27) 

and estimated by the corresponding sample moment s. 
The distribution parameters are then 

6(132-81-1) 
r = 

2132-3131-6 

r(r-2)rs; 

v • /{6(r-l)-S
1

(r-2) 2 (4-28) 

and a = fU; ;' 16 (r-1) - S (r-2) 2 
~ TI; 1 

The and v have the opposite signs. The 

parameter y
0 

can be obtained by using the function 

H(r,v), by integrating t he values y/y
0 

and weighting 

the density function accordingly. The integration 1vas 
performed numerically using the Simpson rule, ob­
taining t he area under the curve y/y , and from it 
the corresponding weighting factor. 0 

Results of probabilit ies of chi-square obtained 
for the distribution of the negative-positive largest 
run-sum are presented in Fig . 4-10. At the 95 percent 
l evel , only 39 . 1 percent of the comput ed chi - squares 
were sma ller than the critical chi-squares . Pearson 
Type IV distribution function was found to be cl osest 
approximation to the frequency distributions of the 
negative-posit ive largest run-sum in samples of n 



years for serially and mutual ly dependent components 
of a bivariate normal, process. 

Estimated parameters of the Pearson Type IV 
distribution function are reJated by the multiple re­
gression equatio~ to parameters of the bivariate pro­
cess and the two truncation l evels. Stepwise multiple 
regression analysis was used in ' the form of Eq. 4-12. 
Independent variables were same as in Section 4-3 . 
Dependent variables were th~ estimated parameters r, 
v, a, and y

0
• Table 4-12 gives the estimated regres-

sion coefficients . 

Multiple regression analysis was performed also 
for e1 and B

2 
parameters as dependent var iabl es, 

with the same independent variables as above , by using 
Eq . 4-12 . Table 4-13 gives the obtained regression 
coefficients. The multiple correlation coefficients 
are very low in this case. 

Table 4-12 Estimated Regression Coefficients of 

P•ra.~ 

•t•r 

2.60SIS 

..,tiS l. 70117 

4.70241 

Ya l.OUU 

Eq . 4-12 for Parameters of Pearson Type IV 
Distribution Function Fitted· to Frequency 
Distributions of the Negative-Positive 
Largest Run-Sum in n Years. 

•' 
. OSZ9S . 220S9 ~1. 10793 .6l8S7 1.014Z7 • .6S704 , 725C 

. 216'0 ,74$U 7.00U4 s.J~ ... s •7.0S.UO 2 . 171,3.4 . 7160 

·:!.SllSl ~1 .2SS96 •4.7 5224 -•.cS6~2 11.2751'$ 1.8S4U .SO·U 

.llU1 • ,)Sd2 . 8076.$ 1.029$1 •1.9:51U .JISl:: .S434 

Table 4-13 Estimated Regression Coefficients of 
Eq. 4-12 for Parameters a

1 
· and a

2 

P<t..f'S... 

•t•r ., ., 

of 

Frequency Distribution of the Negative­
Positive Largest Run-Sum . 

•' 
.; . 7lSOS . 1:ri'SS .700~1 . 40)78 ·1.09167 l.4:"UII 1..7406 .llSS 

. .SU7.t 1.&4019 1. 9!571 s.~uz l.SI061 •2.2H9J 2.30163 .3.61 

1.0 .-------- - --- -., 

0.8 

0.6 

Fig. 4-10 Cumulative Distribution Curve F(P(x2)] of 
Probabilities P(x2) of Chi-Squares of the 
Largest Negative~Positive Run-Sum in Using 
the Pear~on Type IV Function. 

Figures 4-11 and 4- 12 show comparisons of 
experimental cumulative frequency distributions of the 
largest negative-positive run-sum in the samples of 
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Fig . 4-11 Comparison of the Cumulative Frequency 
• Distribution of Negative-Positive Largest 

Run- Sum in a Sample of 50 Years with a 
Fitted Cumulative Pearson Type IV Discribu­
tion Function, with Parameters a; 1.4354, 
v = 2.5801, r = 5.8329, and y

0 
= 4.3655 . 
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Fig. 4-12 Comparison of the Cumulative Frequency 
Distribution of Negative-Positive Largest 
Run-Sum in a Sample of 25 Years with a 
Fitted Cumulative Pearson Type IV Distribu­
tion Function, with a= 0.6505, v= 0.4248, 
r = 3.5160 and y

0 
= 1.2110. 

50 and 25 years , with the fitt ed cumul ative Pearson 
Type IV distribution functions . For the case of a 
bivariate process, serially and mutually dependent, 
with pl (ex) = pl (Ey) = 0 .4 , p(O) = 0.5 , q1 = 0.50, 

q2 = 0.35, and n = 50 years, the computed chi-square 

is 3.24 wi t h three degrees of freedom, which is 
smaller than the critical value of 7.815 . For the 
case of a bivariate process, serially and mutually de~ 
pendent, with pl (ex) = pl (Ey) = 0. 4 , p(O) = 0. 7 , q1 = 

0.35, q
2 

= 0. 20, and n = 25 years, the computed chi­

square is 159 , which i s t he l argest obtained . It can 
be observed that even for large values of chi-square, 
the fit l ooks good , at least for the upper extreme 

~ 

I 
I 
I 
I 
~ 

.. : .... 
•t· 



~<hich is of i nterest in most applications . I t shoul d 
be s t ressed t hat Fig. 4-12 corresponds t o t he case of 
the Pearson Type IV distribution adjusted t o t he dis­
tribution of the l argest negative-posit ive run-sum, 
which gave the smalle~t value of F(P(x2)] for 
P(x2) • 0 . 9S among the other drought par ameters stud­
i ed. The case present ed i n Fig . 4- 12 is the one 1~ith 
l ar gest computed chi-squar e (1S9). The other cases 
wi l l have ~uch better fit s . 

The Pear son Type distr ibution function , with 
or igin at the mean, is 

y (4-29) 

wit h 

Parameters A1, A~ , m1, and m
1 

are estimated by the 

method of moments . Simi larly, t he parameters e
1 

and 

s
1 

are defined by the popul a t ion moments and esti­

mot eJ by tlw ~e.:ond , t hi r d, and fourth s ample moments 
about the mean. Then the distri bution parameters are 
es timated by 

(4-30) 

',{ ( r - 2)+r (r+2J (.i-31) 
s
1 
(r~~J +16(r+l ) 

Bl 
Ill~ : '.{ (r+2)-r (r+ ~) /-----,?,..::..---} 

B1 (r+2)-+16tr+l) 
(~-3~) 

t .j-33) 

l;ith 1:he probability Jt·nsJty function :1t cht' origin 

y c 

m1 m? 
(m

1
+1} tm~+l) -

);11 +):1? 

(m1·.,~·:n -

\~11t'n P::; i~ positiV<:, 111, is t ht' positive I'Otlt. rhc 

r (·!>ul t s tlf proll:.tl>i 1itjt•s of ~hi-stJUare fur Ji st rihll· 
tions of thl,) llC!:i.itlvt'·nc;:ativc lar)!l'St r 11n- s llm arc' 
given in h g . ~ - 13. .\t the 95 pc·r.:ent l cvl'! . 5lL3 
percent of the co:1putcd .:hi-squar,;-::; ar<' "'~allcr t han 
the critical dti-s(jU:II'I.) values. l'hl.) Pearson Type I 
distribution 1.a:< found to be the do"t':<t approx1mation 
t.o fn'qucncy Ji~tributions of the ne;:ativc-nt'~ative 
lar!Wst r un- sum in n yc:.~rs of ~.:-r ta ll)' anu mutu:Jlly 
dependent components of J normal bivariat e proces" . 

Cs t im3t <'d par:u~Wtl.)l'!' of this rcor~on Type 1 
funct ion 3Tl' related by a step~>isc ~:~ultip1c I incar 
regr~~~ i on, of the tn1o of Eq . 4-1 2, to the 5ame inde­
pendent vuriabl~s as in Suction 4-3 . Dcpundent 

3S 

I. Or------ --------

0.8 

Fig . 4-13 Cumulative Dist r i bution Curve F(P(x2)] of 
Probabil i t ies P(x2) of Chi-Squar es of t he 
Lar gest Negat ive-Negative Run-Sum in Using 
t he Pearson Type 1 Function . 

variables wer e A1, 1og10 A2, a 1 , and log10 m
2

. Tabl e 

4- 14 gives t he estimated regri.)S~ian coeffi cients . 

Table 4-1~ lstimated Regression <~ufficicnt s of 
Eq . 4-12 for Parametor~ of Pear son Type 
Disl:ribution Function ~ it tcd to Frequency 
Di s• r ibutions of the Ne~~t ive-N~gative 
l~rgest Run-Sum in Sampl es of Si:o n . 

::'ll . 9:809 ~~ SSSl<. ·.73S' S -l.3:CI!)0 l. i6SS9 - . o2s;9 . ~9:!27 . 3609 
~~~---~·~--~--~----+---4---~--~ 

3.19720 · .l6:lG .. zo:•6 j -.&701~ 1 :oo9l -.<o43H -.eoz;s .~o2:1 

~1ul tiple 1 incar rcgrc~sion l'<tuations of parameters 
S) and $, :lre also oht ainl'd for the ~arne Jlldepen-

J cnt v:Jriable~. hith rL')! l"L'Ssion <.'ot• ff k i.:nts of t he 
type of t;q . 4-12 g iV\'11 in Tah l l.) 4- l S . 

T:.~hle ·1-15 l:stJm:l t t'd Rq:r<':;~ion Coefficient s of 

Paro"'-
t'tCt' a 

81 3.8~.:83 

I--

s~ 9.:.1 0 14 

l;q . -1- 12 fur l'al'aml'tt'rs s
1 

:md B
2 

of 

Fn·ql ll'lll·y llistr ihut ion of the Nc~:ativc­
~cgat i Vt' l.:tJ'gl'St !tun-Sum in Samples of 
Si :: l' I I . 

h c d 0 f Jl2 

,pu;.1 '1 7~16 .194:9 ... ZS4Z9 -I OH:S -t. z:Go; • 7:197 

.40 I M '1.781 . 127:8 - 1. s : o12 -~. 1 9 183 . i l :s 

Hgurc .l- J .l sho1~s a comparison of the 
experimentally oht:tined frequency distribution of t he 
negativc -ncgativ~ largest run-sum in sampl es SO years 
l ong, 1d th the fitted cumul ative l'c:,rson Type I di s ­
t r i hut ion f11n.: t lon, for the biv:lriate pro.:cs~ with 
seri :li I)' and mutu:Jil)' d.::pendont component s , and wi th 
p

1 
tcx) = 0 . 4, p l (£:)') = 0 . ::!, p(O) = 0 . 5 . q1 = 0 . 2 , q 2 

0.35 , Jnd n = SO. The computed chi- :;c{u3Te is 6. 72 
Kith five degrees of freedom, hhich is smaller than 
the critical chi-square of 11. 07 . Figure ~- 1 5 $ho1.;s 
a s imi lar compnrison in case the l argest ~omputDd 
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chi-square is 431.0, for the bivariate process, with 
serially and mutually dependent components, and 
P1 (cx) = P1(cy) = 0.4, p(O) • 0. 7, q1 = q2 = 0.2, and 

n • 25. 
.· 
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Fig. 4-14 Comparison of the Cumulative Frequency 
Distribution of the Negative-Negative 
Largest Run-Sum in a Sampl e of 50, and the 
Fitted Cumulat ive Pearson Type I Distribu­
tion Function, with Parameters A

1 
= 

2.64655, A2 = 21.28228, m1 = 0.48980, and 

m2 = 10.9802. 
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Comparison of the Cumulative Frequency 
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Fitted Cumulative Pearson Type I Distribu­
tion Function, with Parameters A

1 
• 

2 . 0510, A2 • 43. 5548, m1 = 0.0329 , and 

m2 = 20.9340. 

.. 



Chapter V 

DROUGHT ANALYSIS OF PERIODIC-STOCHASTIC PROCESSES 

5-l Statement of the Problem 

The drought analysis of periodic-stochast ic 
processes is more compl ex than the drought analysis of 
stationary stochastic processes . The usc of the the­
ory of runs for periodic-stochastic processes may no 
longer be the best approach unless some decomposition 
of series is perforQed for these processes . However, 
any such t ransformation may affect the object ives and 
results of the analysis . 

Monthl y sories will exemplify t he 
periodic-st ochastic processes in the following analy­
sis. Series 1-1ith a shorter time i nterval than a month 
may also serve the same purpose . A review of present­
ly available t echniques , and of some potent i al tech­
niques for drought ana l ysis of t hese processes, are 
presented in this chapter onl y. A case s tudy is given 
in which the drought parameters used are specific 
drought magnitude criteria . 

S-2 A Review of Present ly Available Techniques 

Drought anal ysis depends whether the water flow 
is regulated or not . The instantaneous ext r emes are 
used i n case of no regulation, while deficits during 
the critical periods are used when f l ow regulation is 
involved . 

In the t heory of extremes, droughts are defined 
as i nstantaneous or interval smallest annual values , 
with ever y year ~iving one l owest value or the drought 
(Gumbel, 1963). The problem was to find probabilities 
of these l owest values , called the minimum drought 
values , either positive or zero. Using the symbol X 
for random var iables defining droughts, the return 
period T(X), as the expected number of years between 
the exceedcnces of a deficit, is 

1 1 
T(X) "P(X~x] = F(X). (S-1) 

Since the exact distribution of drought variables as 
defined is not available, the asymptotic , bounded 
exponential distribution of the smallest value of a 
positive variabl e was used by Gumbel. This approach 
to droughts of periodic-stochast ic processes may be 
well used in pollution control problems , at taching 
probabilities to level s of critical concentrations of 
pollut ants . Simi l arly, probabili tics of minimum con­
secut ive n-days values, with n oft en 7, 15 and 30 
dars (Gannon, 1963) , arc determined . This particular 
definition of drought as a couple-of-days lowest 
values in a year may be acceptabl e for perennial but 
not for intermittent streams . 

For studying droughts in case of flo~ 
regulations , Askew et al . (1969) defined the critical 
period as the t ime duration during which the hydrolog­
i c record '"oul d give t he most critical deficit ~<ith 
respect to demand . The maximum permissible water 
extraction rate is used as a variable of this critical 
period. This permissi ble rate is based on the active 
st orage available in a hypothetical system of reser­
voirs . The demand can be smal ler , equal or gr eater 
t han the maximum permissible extraction rate . Gener­
ally , the extraction is assumed to be constant during 
the critical period . ll'henever t he rate of demand is 
greater than the maxi mum permissible extracti on r ate, 
the deficit may be conceived as a drought . 

37 

Another paramet er used for definit ion of droughts 
in case of flow r egulation is the firm yield criterion 
(Beard, 1963) . The number of shortage periods per 
year, and the amount of annual firm yield , are defined 
as drought parameters . Firm yield shoul d be well de­
fined for a reservoir system, with the characteristics 
of this system speci fied how it produces the fir m 
yield in t erms of monthly and total annual use of 
water. A single index of the economic effect of 
shortages 1;as suggested by Beard (1963), in form of 
the sum of squares of annual shortages in a 100-year 
period, beginning with an initial or representat ive 
amount of water in all storage capacities. The yi eld 
needed to be met by the system i s the total water re­
quirements of all water users and all losses . 

Beard and Kubik (1972) , in studying the operation 
rules of a reservoir system , stated that many theoret· 
ical studies of potenti al yield are based on providing 
a uniform yie ld throughout the year, whereas virt ually 
all water uses var y seasonall y. As a consequence of 
it, and in order to consider a mor e rea l i st ic s i t ua­
t ion , they suggested a detail ed sequent ial analysis of 
the process of runoff storage use, both for making a 
reliable estimate of required storage and for deri ving 
operation rules of the system. 

The water supply in form of runoff t i me ser ies 
have been studied extensively. Their description by 
mathematical mode ls of periodic-stochast ic nature of 
monthly, weekly or daily ser ies has been extensively 
invest i gated . The water use t ime series have not been 
studied in such det ails as the water suppl y time 
ser ies . Salas and Yevjevich (1972), in studying the 
actual wat er demand or water use t ime series, conclud­
ed that the demand series are basically trend-period­
ic-stochastic series are to be considered: A need 
exist s for a development of methodology of estimating 
these parameters and producing the realistic realiza­
tions of future sampl es of water usc time series . The 
lack of these sequences is a l ikely r eason for con­
sidering only t r end and periodic components in water 
demand time series . Only the periodic water demand 
series ar e used in this paper . 

S-3 Potential Techniques for Dr ought Analysis of 
Periodic-Stochastic Processes 

One alternat ive in treating the drought of 
trend-periodic-stochastic series is to r emove trends 
and periodicities in parameter s, using either the 
parametric or nonparametric met hod of their removal. 
The procedure i n this approach is relatively simple, 
namely it is assumed that water demand ser ies have 
both trends and periodicities in basic parameters, 
with these periodicities being in phase with periodic­
ities in parameters of water supply series . An addi­
tional simplification is that they all have the same 
amplitudes . Llamas and Siddiqui (1969) used this 
approach for the analysis of a univariate monthly 
precipit at ion periodic- stochast ic series . The non­
parametric method of removing per iodicities in param­
et ers was used , and the the orr of runs was applied i n 
the drought analysis i n case of a dependent st ationary 
time ser ies . It can be sho1m t hat the stochast ic com­
ponent of monthly precipitation could be approxima t ed 
by an independent series for all practical purposes . 
This fact simplifies the study of droughts for the 
stochastic component of monthly precipit ation in a , 
univariat e case . For the bivariate case and removed 



periodicities in parameters, in this approach the 
exact expressions for distributions of different runs 
can be used, as shown in Chapter II. However, the 
run-sums may not have a clear meaning if the general 
but different standard devi~ions of the two series 
are not retained while removing periodicities. Run­
lengths can be investigated on the standardized sto­
chastic components without too many problems. For de­
pendent second-order stationary univariate or 
bivariate series either the exact or approximate ex­
pressions of the theory of runs, as presented in 
Chapter II, will produce the properties of droughts. 
The analysis of droughts for trend-periodic-stochas­
tic processes, by removing trends and periodicities in 
parameters , depends on the characteristics of demand 
series. 

Another alternative is to use the 
supply-less-demand series. Since the supply series is 
periodic- stochastic and the demand series is assumed 
to be only periodic, in phase with and of the same 
amplitude as the periodicity in supply series, dif­
ferences between supply and demand represent a first­
order stationary process of deficits and excesses. In 
case of high variability between the low and high 
flows , the excess-deficit series still can be period­
ic, in which case the theory of runs of stationary 
processes may not be meaningfully applied. This ap­
proach has the disadvantage of not being adequate when 
periodicities in demand are out of phase with and of 
different amplitude than the periodicity in supply. 

The third alternative, used in this paper, is 
the "drought-magnitude and drought-durattion criteria." 
The magnitude of a drought depends on the demand im­
posed on the water system. During the planning stage 
of a water resource development scheme, for example, 
the choice of droughts for analysis is related to 
contemplated demand series. As shown by Texas Water 
Development Board (1971), the severity of the most 
critical drought affects the selection of the ultimate 
plan, by influencing decisions on the size and the 
number of facilities required for optimal performance 
of a system. The more severe this most critical 
drought, the larger or more numerous are facilities 
that are needed to insure an adequate performance of 
the entire system. Of great interest in the planning 
process are droughts which require new storage capac­
ity to insure uninterrupted deliveries , or which re­
quire importation of water from other sources. 

When severity of a drought is studied, special 
considerations must be given to relations between the 
drought duration and all the physical storage and 
other capacities of the system, which are required to 
meet the demand during the drought per iod . A drought 
of a given duration, equal to or longer than the time 
required to use the storage system from a full to an 
empty state, will have quite a different effect on the 
system than a short drought not requiring more than 
the total water storage. 

The magnitude of a drought can be defined as the 
maximum absolute value of monthly differences between 
supply and demand over the drought duration . In 
mathematical terms, this magnitude is 

with X. 
l 

k+t 
M = min [min 

t t k 
r 

i • k+l 

X.-D. 
...!........!..] 

t ' 
(5-2) 

the monthly supply (in the case of a system 

of reservoirs it is the sum of the monthly inflows to 
all the rese~oirs), D. the monthly demand (in case 

l 
of complex systems, it is the sum of monthly demands 
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at all system demand points), k any starting time 
point for studying droughts , and t the duration of 
the critical drought period in samples used for analy­
sis . This concept is analogous to studying the nega­
tive run-intensity for univariates or the joint nega­
tive-negative run-intensity for bivariates. 

Another parameter, proposed by the Texas Water 
Development Board (1971), is the drought time posi­
tion, defined by the time of the drought mid-point. 
For a drought with duration t and the absolute 
starting time k, the position is 

(S-3) 

There may be individual months during drought 
periods when supply exceeds demand. However, effects 
of these months may not be sufficiently large to over­
come the general drought consequences, since all the 
other months would have significant deficits. Be­
cause some sort of flow regulation may always be in­
volved, the storage easily takes care of individual 
months with small surplus and distributes it over the 

'months of significant deficit. If no regulation is 
involved , the surplus of these couple of months is 
simply lost. 

This alternative for drought measuring parameters 
has the basic disadvantage that the theory of runs 
cannot be easily applied, since the periodicities are 
involved. It is a somewhat different approach to 
drought definition. The main advantage over the other 
approaches to drought definitions is that it can 
easily treat the cases of demand being out of phase 
and of different amplitude in comparison with those of 
water supply. 

A fourth alternative is based on a simultaneous 
generation of annual and monthly series, by joint:y 
preserving their parameters such as the mean, varl­
ance serial correlation coefficients, among the 
othe;s. Harms and Campbell (1967) used this type of 
generation, claiming to preserve the normal distribu­
tion of annual flows, the lognormal distribution of 
monthly flows, and the serial correlation of annual 
and monthly flows. The techni que is based on the 
assumption that a first-order linear autoregressive 
model is adequate to represent the dependence of an­
nual flow series, and that the Thomas-Fiering model 
is adequate to represent the structure of monthly flow 
series , with an adjustment being sufficient to take 
care of the linkage between the annual and monthly 
flow series. Their expressions are 

(S-4) 

and 

with the adjustment 

where a. 
l 

q. . and 
l ,J 

q .. 
l,J 

365 qi,jQj 

ra.q .. 
l l , J 

(5-6) 

is the number of days i n the j-th month, 

Qj are the generated monthly and annual 

I 



flows, respectively, q! . and Q! are the historical 
1, J J 

monthly and annual flows · respectively, R. and r. 
l 1 

are the first serial correlation coefficien~s of an­
nual and monthly series, respec~ively. Another tech­
nique available for this type of generation is the 
disaggregation process, outlined by Valencia and 
Schaake (1973) . For the cases considered in this pa­
per, namely the first-order linear autoregressive 
model for both the annual and monthly series, the 
technique which considers a sequential generation of 
annual events with a disaggregation model for generat­
ing seasonal, monthly, weekly, or daily events within 
the year, can be adjusted and used. Due to computer 
storage requirements, these authors suggest first to 
generate seasonal values and then to repeat the pro­
cess on a season by season basis to generate monthly 
values in a second disaggregation step. 

For this fourth alternative of simultaneous 
generation of annual and monthly time series, once 
samples are generated, the theoretical analysis or 
approximations in case of dependent processes can be 
applied to annual series to determine the probabili­
ties of drought runs. For example, if the annual pro­
cess is inferred to be stationary process having the 
first serial correlation coefficient p 1, then the 

probabilities of a long drought or probabilities of 
the longest run-length, say for a project of economic 
life of SO years, can be determined. For simultaneous 
generation, a k-year or the longest drought in. annual 
series may be singled out, and the monthly series of 
this period can be investigated. The annual series 
permit the identification of critical drought periods 
to design the system, with the sequential patterns of 
monthly series studied for these periods . The main 
advantage of this alternative is the use of a more 
reliable estimation procedure for probabilities of 
droughts rather than obtaining these probabilities 
from less reliable frequencies of historical records. 

Further advantage of the fourth approach relates 
to the use of optimization techniques in design and 
operation of water resources systems, because, after 
the critical droughts of given probabilities are de­
termined, the optimization procedures can be applied 
to parts of monthly series during these critical 
periods instead of optimization extended throughout 
the total generated monthly series. 

The approach of drought magnitude and drought 
duration criteria, as outlined herein, has the poten­
tial to be developed in a technique of drought analy­
sis of periodic-stochastic processes. To demonstrate 
this potential, a case study has been worked out and 
presented in the next section. 

S-4 A Case Study 

The drought analysis of periodic-stochastic 
processes is complex not only due to periodicities, 
but also because the number of parameters for both the 
supply and demand series is much greater than in the 
case of stationary stochastic processes. The large 
number of parameters requires a large number of cases 
to be studied in the general form, and this number can 
be excessive . As a consequence, no attempt is made 
here to generalize all cases or to cover some or most 
of them in this paper. A case study is given only in 
order to show the use of drought parameters, as 
presented in Section S-3 and therefore, the case study 
covers a small number of parameters . In spite of 
simplifications it is thought that the case has a 
practical significance. 
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The monthly supply series is assumed to be a 
periodic-stochastic process, with periodic mean and 
periodic standard deviation composed only of the 12-
month harmonic. The resulting stationary stochastic 
component follows the first-order linear autoregres­
sive model, as given by 

with x the overall mean (2.885), c
1 

(u) the ampli­

tude of the 12-month harmonic in the mean (1.889), 
e1(u) the phase of the first harmonic in the means 

(0), s the overall mean standard deviation (1.848). 
1: 

cl (o) the amplitude of the first harmonic in the 

standard deviation (0.946) , e
1

(o) the phase of the 

first harmonic in the standard deviation (0), and p
1 

the first serial correlation coefficient (0.5). The 
independent stochastic component Ci is assumed to 

follow the three-parameter lognormal distribution 

f(x) _ __:;1 __ exp {­

(x- 6) s I2Ti 
n 

(ln(x-Jl) - u ) 2 

n }, 

2s
2 
n 

with the lower bound a =-1.5, un 0.2216, and 
2 

sn 0 .3677. 

(S-8) 

The monthly demand series is assumed to be a 
periodic process, with periodicity composed only of 
a 12-month harmonic.. This is a simplification in 
comparison to reality. Nevertheless, it is a common 
practice in water resources planning to simplify the 
complex nature, because quite often the lack of data 
may not justify the, more complex models . The demand 
model then is 

D ff + C* cos(~ 1: + 6*) 
i 1 6 1 ' 

(5-9) 

with ff the overall mean (2 .50), Ci the amplitude of 

the first harmonic (1 .00), and ei the phase angle 

of the first harmonic (0). For supply and demand 
series in phase, 6

1 
(~) = ei; otherwise they are dif-

ferent . In this case study three alternatives are 
used for phase differences [e1(u) - ei] = 0.0, ~12 

and ~. 

Since the monthly demand has been shown by Salas 
and Yevjevich (1971) to be periodic-stochastic 
processes, the demand could have been modeled as 

~ 
+ {$0 + ci (a) cos ['6 ' + ei (a)]} CPi€i-l •q) (5-10) 

with parameters ff, Ci(u), ei(~), 80 , Ci(o), ei(o), 

Pi· and the independent stochastic component of de­

mand series ~i as the counterpart of that of the 

supply series. Since results are expected to be sim­
ilar to those when only the periodic demand is 



considered, as far as computing the drought 
characteristics , the c~se stu~y treats only the peri­
odic demand. 

A program was prepared to compute drought 
characteristics as defined in:Section S-3 , namely the 
drought magnitude, Eq. S-2, the drought durations for 
its given magnitude and the corresponding deficit . 
Figures 5-l, S-2, and 5-3 shown supply and demand 
series , for the three cases of phase differences. 
Figures S-4, S-5 , and S-6 show the drought magnitude 
computed for a set of samples each of 30 years of 
monthly f l ows, as well as the cumulative deficit 
during the drought of a given duration for the three 
phase differences between the supply and the demand. 

Values of drought characteristics as shown in 
Pigs. S-4 , 5-S, and S-6, are presented in Table 5-l. 
Figures S-4, 5-S , and S-6, give an idea of the range 
of values of the drought magnitude criteria and its 
duration. The selected value corresponds to the maxi­
mum deficit. It should be noted that generally the 
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Fig. 5-l Supply Series (Periodic-Stochastic) and 
Demand Series (Per iodic) for the Case Study 
with No Phase Difference [81 (~)-8i = 0 .0]. 
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criteria decrease with an increase in duration. The 
analysis of the values obtained show that phase dif­
ferences (up to half a cycle) do not influence very 
much the drought duration or the volume of deficit for 
the case study. However, it should be recognized that 
these results apply only to the selected values of 
the case study and no generalization could be made. 

Table 5-l Values for Drought Characteristics of the 
Case Study with Three Phase Differences 
between Supply and Demand Series. 

Phase Drought Duration Volume 
difference magnitude in deficit 

months 

0 .6376 43 27.4169 

rr/2 .6969 42 29 . 2717 

1f . 6734 42 28.2812 
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Fig . 5-3 Supply Series (Periodic-Stochastic) and 
Demand Series (Periodic) for the Case St udy 
with Phase Difference of n, [81 (~) - 8i = 
1f] . 
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Fig. S-4 Drought Magnitude ( 1) and Corresponding 
Volume Deficit (2) for Given Drought 
Duration , Which Correspond to the Case 
Study of No Phase Difference. 



4.8 30 

I 
4.0 I 25 

I 
_)%) I 20 _ 

I :~ 

I 
;; 

15 ~ 
I E 

I -a 
......._~ I 

10> 

""""' ! 5 ~ 

00 10 20 30 40 50 so0 

Time. month$ 

Fig. 5-S Drought t-iagnitude (1) and Corresponding 
Volume Deficit (2) for Given Dr ought 
Duration, 1'/hich Correspond to the Case Study 
of Phase Difference Equal to ~/2. 

41 

Time, months 

Fig. 5-6 Drought Magnitude (1) and Corr esponding 
Volume Def i cit (2) f or Given Drought 
Duration, Which Correspond to the Case s·;;udy 
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Chapter VI 

CONCLUSIONS 

The main contribution' and conclusions of 
investigations in this paper are; 

{1) For a unidimensional case, an exact 
expression for the longest run- length of a given kind 
for a Markov chain has been developed, based on 
Bateman's work as presented by Eq. 2-37. The analysis 
provides an adequate approximation to distributions of 
the longest run-length of unidimensional dependent 
series following the first-order linear autoregressive 
model for values of the first serial correlation coef­
ficient not greater than pl z 0.4. 

{2) For a bivariate case, with the two 
components serially and mutually dependent, serially 
dependent but mutually independent, and serially inde­
pendent but mutually dependent, transformation to the 
univariate case is accomplished by defining the new 
random variables. To obtain the four-state Markov 
chain approximation to the serially and mutually 
dependent components of a bivariate series, of the 
first-order linear autoregressive dependence of each · 
component, the quadrivariate normal distribution and 
its integration is performed by using the tetrachoric 
series expansion. The approximation seems to be 
satisfactory for values of the first serial and cross 
correlation coefficients up to 0.4. For better re­
sults, more terms should be included in the series 
expansion. Since lumpability requirements are too 
restrictive, the use of transformations of bivariate 
to univariate cases and of the Markov chains as ap­
proximations to autoregressive models for the new uni­
variate variables, gives good approximations. 

(3) For the distribution of the longest 
run-l ength of a given kind in a sample of size n for 
serially and mutually independent, and serially inde­
pendent but mutually dependent components of bivariate 
processes, an exact expression is developed, based on 
the analysis of the four possible outcomes and the 
work by David and Barton. 

(4) The experimental Monte Carlo method was used 
to find the distribution of the run-sums in bivariate 
processes w1th serially and mutually dependent compo­
nents. 

(5) Frequency distributions of selected runs for 
the study of serially and mutually dependent compo­
nents of bivariate processes were obtained by using a 
bivariate linear autoregressive model. Results are 
presented in the form of estimated parameters of 
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fitted probability distribution functions to experi­
mentally obtained frequency distributions . Discrete 
probability distribution functions are fitted to 
frequency distributions of run- length, and continuous 
distribution functions for the run-sums. 

(6) For the run-lengths of infinite populations, 
the negative-binomial distribution is found adequate 
to approximate the frequency distributions of nega­
tive-negative and negative-positive run-lengths of in­
finite series. In finite samples of data a mixture of 
two geometric distributions is found adequate to ap­
proximate the frequency distributions of negative­
negative and negative-positive longest run-length. 

(7) Distribution functions of gamma type, 
transformed by Laguerre polynomials, are used to ap­
proximate joint dist ributions of negat ive-negative or 
negative-positive run-sums and run-intensities, 
respectively, for infinite series. Expressions for 
coefficients of Laguerre polynomials are obtained and 

'" coefficients i n multiple regression equations 
determined for· parameters of joint distributions. For 
the negative-negative largest run-sum in samples of 
size n, the Pearson Type I distribution function is 
selected as an approximation, and the Pearson Type IV 
distribution function is selected as an approximation 
for distributions of the negative-positive largest 
run-sum in samples of size n, with parameters of the 
Pearson Type I and IV distribution functions. 
Multiple li.near regression equations are determined to 
express the estimated parameters of fitted probability 
distribution functions in terms of parameters of the 
underlying bivariate processes and the two truncation 
levels in conclusions (5) , (6) and (7) . 

(8) Explained variances by the multiple 
r egression equations for the parameters of distribu­
tions fitted to frequency distributions of run vari­
ables of infinite series are much higher, on the 
average, than the corresponding explained variances 
for run variables in case of samples of a given size. 

(9) The present theory of runs is not adequate 
to treat the periodic-stochastic processes. At the 
present stage an alternative type of drought analysis 
has to be used. A case study based on a particular 
monthly data series and drought parameters shows that 
the parameters are not affected significantly by the 
differences in phases up to a half cycle between sup­
ply and demand. 

~· 
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Abstract': ~tethodologies for analysis of droughts are pre­
sented for stationary and periodic-stochastic processes. 
Droughts are s tudied by means of the theory of runs. Dis­
tributions of the longes t run-length and the largest r.un­
sum in a series of a given l ength, and dis tri but i ons of 
the run-length and the run-sum of infinite SE'ries for 
various cases of univarinte and hivariatc series are in-
vestigated. Exact , approxi mate or experimental l y obtained 
expression,. are prrs!'nt ed for univariatE' and bivari ate 
independent and dependent ~eries. For bivariate series 
comhinat.ions of ~cria II y indrp<>ndent and dependent, and 
mutually indcprndent and dependent series an• studied . 
When exact ana l ytical ~ol uti ons could not he obta ined, the 
data generation method i1 u~rd . Frequency di~trihutions 
of various drought characteristics associated with the 
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Abstract: Methodologies for analysis of droughts are pre­
sented for stationary and periodic-stochastic processes. 
Droughts are studied by means o f the theory of runs. Dis­
tributions of the longest r un-length and the largest run­
sum in a series of a given length, and distributions of 
the run-length and the run-sum of infinite series for 
various cases of univariatE> and bivariate series are in-
vestigated. Exact, approximate or experimentally obtai ned 
expressions are presented for univariate and bivariate 
independent and dependent series. For bivar iate serie~ 

combinations of serially independent and dependent, and 
mutually independent and depE>ndent series are studied . 
\ihen exact ana lytical sol utions could not be obtained , the 
data generation method is used . Frequency distributions 
of various drought characteristics as,ociated with the 



runs, obtianed by the generation method for the bivariate 
case, are fitted by discrete or continuous probability 
distribution functions . Multiple regression analysis -is 
used to obtain useful relationships between the parameters 
of fitted distribution functions and the parameters of 
time series dependence, cross dependence and the trunca­
tion levels. Periodic-stochastic series are studied by 
defining drought and its parameters for this particular 
type of hydrologic processes. 
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